COURSE OUTLINES

Table of Contents	
FIELD I	3
ANALYTICAL CHEMISTRY, ENVIRONMENTAL AND FOOD CHEMISTRY AND	2
	د د
MODERN TECHNIQUES AND APPLICATIONS OF ANALY TICAL CHEMISTRY	3
ENVIRONMENTAL SCIENCE AND TECHNOLOGY	8
ADVANCED LADORATIONAL OF INSTRUMENTAL ANALYSIS	. 11
ADVANCED LABORATORY OF INSTRUMENTAL ANALYSIS	. 15
APPLICATIONS OF NANO-MATERIALS IN ANALYTICAL CHEMISTRY	. 20
ADVANCED COURSES IN FOOD PROCESSING AND FOOD PACKAGING	. 26
SPECIAL SUBJECTS ON FOOD QUALITY AND SAFETY	. 30
ADVANCED LABORATORY IN FOOD ANALYSIS AND TECHNOLOGY	. 34
LABORATORY OF ENVIRONMENTAL POLLUTION CONTROL	. 38
FIELD II	. 41
CHEMISTRY, PHYSICAL CHEMISTRY AND MATERIALS TECHNOLOGY - EPISTEMOLOGY	/1
SURFACE PHENOMENA HETEROGENEOUS CATALYSIS PHOTOCATALYSIS	. 41
SUNTHESIS OF ADVANCED AND NANOSTRUCTURED MATERIALS	. +1
COMPUTATIONAL CHEMISTRY STATISTICAL MECHANICS STRUCTURE	. ד
AND PROPERTIES	. 49
TECHNOLOGY OF MATERIALS FROM OIL AND BIOMASS	. 53
HISTORY OF CHEMISTRY	. 58
LABORATORY OF SYNTHESIS AND CHARACTERIZATION OF MATERIALS	. 62
COMPUTATIONAL CHEMISTRY & MOLECULAR SIMULATION LAB (I)	. 68
FUNCTIONAL AND CATALYTIC MOLECULAR MATERIALS	. 75
SPECTROSCOPIC AND PHYSICOCHEMICAL CHARACTERIZATION METHODS	. 80
CHEMISTRY, PHYSICAL CHEMISTRY AND TECHNOLOGY OF POLYMERS	. 85
EPISTEMOLOGY OF CHEMISTRY	. 89
LABORATORY OF COMPUTATIONAL CHEMISTRY AND SIMULATIONS II	. 93
LABORATORY OF CHEMICAL TECHNOLOGY	. 97
FIELD III	100
SYNTHETIC CHEMISTRY, BIO-CHEMISTRY-BIOACTIVE COMPOUNDS	100
SYNTHETIC ORGANIC CHEMISTRY-STEREOCHEMISTRY-MECHANISMS- PHOTOCHEMISTRY	100
BIO-ORGANIC AND BIO-INORGANIC CHEMISTRY-STRUCTURE OF PEPTIDES AND NUCLEIC ACIDS	105
ADVANCED BIOCHEMISTRY- MODERN TOPICS IN BIOCHEMISTRY	109

BIOLOGICAL MEMBRANES: STRUCTURE, ARCHITECTURE AND FUNCTION.	
BIOSIGNALLING	113
SYNTHESIS AND CHARACTERIZATION LABORATORY I	117
LABORATORY OF BIOCHEMISTRY I	123
BIOCHEMISTRY OF XENOBIOTIC COMPOUNDS_BIOTECHNOLOGICAL APPLICATIONS	126
CHEMISTRY OF DIAGNOSTIC AND PHARMACEUTICAL COMPOUNDS	130
TOTAL SYNTHESIS OF NATURAL PRODUCTS AND PHARMACEUTICAL COMPOUNDS	135
LABORATORY OF BIOCHEMISTRY II	140
SYNTHESIS AND CHARACTERIZATION LABORATORY II	143
LABORATORY RESEARCH	149
MASTER THESIS	153
WRITING AND SUPPORT OF MASTER THESIS	157

FIELD I

ANALYTICAL CHEMISTRY, ENVIRONMENTAL AND FOOD CHEMISTRY AND TECHNOLOGY

(1) GENERAL

SCHOOL	Natural Sci	iences			
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IAO1		SEMESTER	1 st	
COURSE TITLE	MODERN TECHNIQUES AND APPLICATIONS OF ANALYTICAL CHEMISTRY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	3	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours of	and the tota	l credits			
					6
Add rows if necessary. The organisation of teaching				6	
and the teaching methods used are described in detail					
at (d).					
COURSE TYPE	General ba	ckground, sp	ecialization,	skill	S
general background,	development				
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	No				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Postgraduate students will gain knowledge on advanced instrumental analytical techniques, data domains, non-electric and electric data domains, analog signals, frequency signals, digital signals, detectors, transducers and sensors, electrical circuits and circuit elements, semiconductor diodes, power supplies and stabilizers, principles of surface plasmon resonance techniques and quartz crystal microbalance, development of biosensors, applications to various areas of chemical analysis, basic concepts and principles governing mass spectrometry, mass spectrometry instrumentation, hyphenated techniques, ion sources, mass analyzers, detectors, conjugated or sequential mass spectrometry systems, tandem MS modes, applications.

This course introduces information about modern techniques and applications of chemical analysis, such as operational amplifiers in chemical instrumentation, circuits of operational amplifiers, amplification and signal transduction, applications of operational amplifiers, atomic absorption spectrometry (instrumentation, principles, applications), X-Ray spectroscopy (instrumentation, principles, applications), molecular luminescence spectrometry (instrumentation, principles, applications), flow Injection analysis (instrumentation, principles, applications). NMR spectroscopy and applications in analytical chemistry.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others
d information, by using the proper

Respect of natural environment

Promoting free, creative and inductive thinking

Understanding analytical science, demonstrate a coherent understanding of

instrumental analytical chemistry

Depth and breadth of analytical chemistry knowledge

Inquiry and problem solving, critically analyse and solve problems in instrumental analytical chemistry

Personal and professional responsibility, be accountable for individual learning and scientific work in (instrumental) analytical chemistry

(3) SYLLABUS

Analytical instruments. Data domains. Non-electric and electric data domains. Analog signals. Frequency signals. Digital signals. Detectors, transducers and sensors. Electrical Circuits and Circuit Elements. Semiconductor diodes. Power supplies and stabilizers.

Principles of surface plasmon resonance techniques (SPR) and quartz crystal microbalance (QCM). Development of SPR, QCM biosensors. Applications to various areas of chemical analysis.

Mass spectrometry instrumentation. Basic concepts governing mass spectrometry.Mass spectrometry hyphenated techniques. Ion sources, mass analyzers, conjugated or sequential mass spectrometry systems, applications.

Operational amplifiers in chemical instrumentation. Circuits of Operational amplifiers. Amplification and signal transduction. Applications of Operational amplifiers. Atomic Absorption spectrometry (Instrumentation, Principles, Applications). X-Ray spectroscopy (Instrumentation, Principles, Applications). Molecular luminescence spectrometry (Instrumentation, Principles, Applications). Flow Injection Analysis (Instrumentation, Principles, Applications).

DELIVERY	Face to face			
Face-to-face, Distance learning,				
etc.				
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.		
COMMUNICATIONS	Communication via email			
TECHNOLOGY				
Use of ICT in teaching,				
laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	42		
teaching are described in detail.	Presentations by the	15		
Lectures, seminars, laboratory	students			
practice, fieldwork, study and	Homework and	40		
analysis of bibliography,	preparation			
tutorials, placements, clinical	Study and analysis of	50		
practice, art workshop,	bibliography			
interactive teaching,	Exams	3		
educational visits, project, essay				
writing, artistic creativity, etc.				

The student's study hours for		
each learning activity are given	Course total	150
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation		
procedure		
	Written examinationin G	reek, with multiple choice
Language of evaluation,	questionnaires and short-	answer questions.
methods of evaluation,	Essay writing	
summative or conclusive,		
multiple choice questionnaires,		
short-answer questions, open-		
ended questions, problem		
solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation,		
other		
Specifically-defined evaluation		
criteria are given, and if and		
where they are accessible to		
students.		

- Suggested bibliography:

ΑΡΧΕΣ ΑΝΑΛΥΤΙΚΗΣ ΧΗΜΕΙΑΣ SKOOG ΚΩΣΤΑΡΑΚΗΣ Α.Ε. ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Θ. ΧΑΤΖΗΪΩΑΝΝΟΥ, Μ. ΚΟΥΠΠΑΡΗΣ, ΕΛΕΝΗ ΧΑΤΖΗΪΩΑΝΝΟΥ ΑΡΧΕΣ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ SKOOG ΚΩΣΤΑΡΑΚΗΣ Α.Ε.

-Related Scientific Journals: Journal of Chemical Education Analytical Chemistry Analytica ChimicaActa Talanta Microchimica Acta Analytical Methods Analyst Trends in Analytical Chemistry Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Spectrochimica Acta Part B: Atomic Spectroscopy Journal of Analytical Atomic Spectrometry Journal of Luminescence Journal of Fluorescence

SCHOOL	NATURAL SCIENCES			
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY			
LEVEL OF STUDIES	Postgraduate			
COURSE CODE	IA02		SEMESTER	1
COURSE TITLE	ENVIRONMENTAL SCIENCE AND TECHNOLOGY			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly to credits(ECT)	ING ACTIVITIES components of the course, e.g. the credits are awarded for the teaching hours and the total TS)			
	Lectures 3 6			6
	Total 39 6			
Add rows if necessary. The organisation of	on of teaching and the teaching			
COURSE TYPE general background, special background, specialised general knowledge, skills development PREREQUISITE COURSES:	Specialized	knowledge / sk	ills developmei	nt
LANGUAGE OF INSTRUCTION and EXAMINATIONS: IS THE COURSE OFFERED TO	Greek YES			
ERASMUS STUDENTS COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area.
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning.
- Guidelines for writing Learning Outcomes .

After the successful completion of the course, descriptive level 7 of the European Qualifications Framework for Lifelong Learning, the students will be capable to:

• Understand deeply physical and chemical processes taking place in environmental media, pollutants fate and transport, impacts, environmental protection technologies and their applications.

• to use their knowledge and skills in applications and problem-solving, within an interdisciplinary context, relevant to their field of knowledge.

General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?					
Search for, analysis and synthesis of data and	Project planning and management				
information, with the use of the necessary technology	Respect for difference and multiculturalism				
Adapting to new situations	Respect for the natural environment				
Decision-making	Showing social, professional and ethical responsibility and				
Working independently	sensitivity to gender issues				
Team work	Criticism and self-criticism				
Working in an international environment	Production of free, creative and inductive thinking				
Working in an interdisciplinary environment					

Production of new research ideas

Others...

• Application of knowledge dealing with advanced methods, techniques and technologies for environmental protection and materials characterization and applications.

• Inquiring of theoretical and practical background for performing further education, postgraduate and doctoral studies.

• Utilization of laboratory infrastructures and equipment for the above-mentioned aims

• Search for, analysis and synthesis of data and information, with the use of the necessary technology

• Inquiring the necessary learning skills that allow them to continue their studies in a largely self-reliant or even autonomous manner.

• Possesses specialized problem-solving skills, which are required in research and/or innovation in order to develop new knowledge and processes and integrate knowledge from different fields.

- Theoretical knowledge and bringing-applying theory to practice
- Team work as well as working independently
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for the natural environment

(3) SYLLABUS

Environmental Pollutants, Categories (conventional, emerging, priority), Physicochemical properties, Toxicity, Transport and degradation processes in environmental systems, Adsorption in soils and environmental materials, Runoff, Leaching, Volatilization-Drift, Hydrolysis, Oxidation-Reduction, Photolysis, Biodegradation, Dissipation kinetics and mechanisms, Transformation and degradation products, Metabolism, Bioconcentration and biomagnification, Environmental risk assessment, Residues in environmental systems, Nutrients, Eutrophication, Advanced treatment technologies, Photochemical methods $(UV/O_3, H_2O_2, Fenton, etc)$, Ultrasonics, Environmental Catalysis, Applications of membranes, Pyrolysis, Biofilters, In-situ remediation technologies (Biochars, biobeds, bioremediation, phytoremediation, constructed wetlands), Green chemistry and Technology.

DELIVERY Face-to-face, Distance learning, etc.	Face to Face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of Technologies of Information and communications in teaching and communication with students.		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	39	
Lectures, seminars, laboratory practice,	Written essay	46	
fieldwork, study and analysis of bibliography, tutorials placements clinical practice art	Essay presentation	15	
workshop, interactive teaching, educational	Bibliography study	50	
visits, project, essay writing, artistic creativity, etc.			
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of the ECTS			

	Course total	150
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Written essay/project Evaluation criteria: (a) Pleni quality and treatment, inter oral presentation (25%) (d) = presentation (20%)	tude of essay (25%), (b) pretation of data (30%), (c) short questions during oral

- Suggested bibliography (in Greek): Notes/Presentations of professors, Review papers

- Related academic journals:

- 1) Science of the Total Environment
- 2) Environmental Science and Technology
- 3) Environmental Pollution
- 4) Chemosphere
- 5) Environmental Science and Pollution Research
- 6) Journal of Environmental Chemical Engineering

SCHOOL	Natural Sciences				
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY				
LEVEL OF STUDIES	Postgraduate studies				
	Field: Anal	ytical Chemist	try, Environm	nent	tal and
	Food Chen	histry and Tec	hnology		
COURSE CODE	IA03 SEMESTER A				
COURSE TITLE	ADVANCED COURSES IN FOOD CHEMISTRY AND BIOCHEMISTRY			STRY AND	
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepai	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	6	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours of	and the total credits				
			3		6
Add rows if necessary. The organ	nisation of t	eaching			
and the teaching methods used	d are described in detail				
at (d).					
COURSE TYPE	Specialised	l knowledge			
general background,					
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After the completion of the course, postgraduate students will be able to understand special topics of food chemistry and biochemistry as well as advanced analysis techniques so that they can deal with their daily working life based on the knowledge they have acquired. They will be able to better understand the chemistry and biochemistry of food as well as the chemical and biochemical processes during food production, such as the development of their organoleptic characteristics (aroma, taste, color), the use of enzymes and microorganisms, etc.

In addition, they will be familiar to advanced analysis techniques for the identification and characterization of food ingredients.

Graduate students will be asked to study through the literature topics related to the thematic units of the course as well as to solve and/or compare corresponding topics and problems.

In addition, they will be able to search the literature using modern technologies for topics related to food chemistry and biochemistry.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

Search for, analysis and synthesis of data and information, with the use of the necessary technology. Working independently. Production of new research ideas. Practice criticism and self-criticism. Promoting free, creative and inductive thinking.

(3) SYLLABUS

The main topics of this course are:

A. Study of the development of organoleptic characteristics of food (aroma, taste, color)

B. Food additives (flavor, taste, color)

C. Enzymes in the food industry

- D. Food toxicology data
- E. Analytical techniques for food ingredients (DSC, LC/MS, ICP/OES-MS etc.)

DELIVERY	Face-to-pace	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of Power point for lea	ctures.
COMMUNICATIONS	Communication with grad	luate students via email
TECHNOLOGY	and video conference	
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	70
teaching are described in detail.	Project	40
Lectures, seminars, laboratory	Personal study	40
practice, fieldwork, study and		
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.	Total	150
The student's study hours for		
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principles of the ECIS		
STUDENT PERFORMANCE		
EVALUATION	The language is Greek.	
Description of the evaluation	Individual bibliographic p	roject on a specific topic
proceaure	Within the scope of the co	ourse (50%).
Language of suglistion	written exam with develo	For the second sec
Language of evaluation,	The grade of the written	50%).
summative or conclusive	F/10 to pass the course	exam should be at least
multiple choice questionnaires	5/10 to pass the course.	
short-answer questions open-		
ended auestions problem		
solving written work		
essav/report oral examination		
nublic presentation laboratory		
work, clinical examination of		
	l	

patient, other	art	interpretation,
Specifical criteria a	ly-defi re giv	ned evaluation ven, and if and
where th	iey ar	e accessible to
students.		

Suggested Bibliography: ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ των διδασκόντων, Παν/μιο Ιωαννίνων (Teachers' Course Notes, University of Ioannina) Chemistry and Biochemistry of Food, Jose Perez-Castineira, Walter de Gruyter GmbH & Co KG, 2020. Food Biochemistry and Food Processing, 2nd edition, B.K. Simpson, Willey-Blackwell, 2012. Food Chemistry. Belitz, H.D, Grosch, W., Schieberle, P. Springer-Verlag, Berlin, Germany, 2009. Advanced in Food Biochemistry, F. Yildiz, CRS Press, 2010. Enzymes in Food Technology, R.J. Whitehurst, B.A. Law, CRC press, 2002. Food Analysis, Nielsen, S.S., Springer, New York, USA, 2010. Chemical Analysis of Food: Techniques and Applications, Y. Pico, CRC press, 2012. **Related Scientific Journals:** Food Chemistry Foods Food Research International European Food Research and Technology Food Biotechnology and nutrition Food Chemistry and Toxicology Food and Bioprocess technology

SCHOOL	Natural Sci	ences			
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IAO4		SEMESTER	1 st	
COURSE TITLE	ADVANCED LABORATORY OF INSTRUMENTAL ANALYSIS				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ory exercises, etc. If the TEACHING CREDITS			CREDITS	
credits are awarded for the wh	vhole of the course, give HOURS				
the weekly teaching hours of	and the tota	l credits			
					12
	Laborato	ory exercises			
Add rows if necessary. The organisation of teaching				12	
and the teaching methods used	are describe	ea în aetali			
	General ha	ckground			
cookse TTPE	General Da	ickground			
special background					
special buckground,					
knowledge. skills development					
PREREQUISITE COURSES:	No				
	-				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	No				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for

Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

Following the successful completion of the course, students should be able to

I) Understand and apply the basic principles governing chemical analysis by instrumental analytical techniques.

Ii) Understand the basic principles in the design of integrated electrochemical cells, their operation and use in field measurements in conjunction with portable measurement devices. In addition, they understand the basic principles of screen printing and the influence of various parameters on the texture/viscosity of the printing inks and the printing conditions on the quality of printed sensors.

Knowledge

• Knowledge and correct understanding of the specific and advanced concepts, principles and theories related to the chemical analysis with liquid and gas chromatography.

• Knowledge of screen printing technique and the production of disposable sensors.

• Knowledge of advanced software design and casting techniques with photosensitive materials.

• Knowledge and understanding of the individual parts of the analytical instrumentation.

• Knowledge and understanding of the applications of electroanalytical, spectrometric, chromatographic and separation techniques in chemical analysis.

• Knowledge of the adoption of quality criteria for analytical techniques and methods.

• Knowledge of the use and search of international bibliography.

Skills

• Skills in selecting and using the appropriate analytical technique or combination of techniques to solve complex analytical chemistry problems

• Development of analytical methods, adapted to the matrix requirements of the sample, for the determination of the analytes.

• Advanced problem-solving skills through data analysis of international literature

Abilities

• Ability to analyze bibliographic sources and utilize the appropriate analytical technique to solve specific problems

• Ability to select and apply the most appropriate experimental conditions to solve a specific problem at the level of routine analysis as well as research level

• Ability to interact with other postgraduate students or researchers in chemical analysis

• Ability to work together as well as to the independent way of working

• Work opportunities in an international environment• Ability to select and apply the most appropriate experimental conditions to solve a specific problem at the level of routine analysis as well as research level.

• Work opportunities in an international environment.

General Competences

Taking into consideration the general competences that the degree-holder must

acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

Search, analysis and synthesis of data and information, by using the proper technologies.

Working independently

Team work

Respect of natural environment

Promoting free, creative and inductive thinking

Understanding analytical science, demonstrate a coherent understanding of analytical chemistry

Depth and breadth of analytical chemistry knowledge

Inquiry and problem solving, critically analyse and solve problems in analytical chemistry

Personal and professional responsibility, be accountable for individual learning and scientific work in analytical chemistry

(3) SYLLABUS

Design of printing screens. Composition and preparation of various printing inks in aqueous or non-aqueous dispersion media. Screen printing of single or triple electrochemical cells. Quality control.

Gas chromatographic analysis with mass detector. Sample preparation.

Liquidchromatographic analysis diode array and light dispersion detectors. Sample preparation.

Laboratory instrumentation: basic principles. Determination by kinetic methods of analysis. Determination via chemiluminescence system. Nanoparticles synthesis and characterization for the determination of inorganic ions. Determination of metals by atomic absorption spectrometry (AAS). Determination of natural water pollutants by gas chromatography with solid-phase microextraction (SPME), Differential Pulse Stripping Voltammetry.

DELIVERY	Face to face in groups of 5 students
Face-to-face, Distance learning,	
etc.	

USE OF INFORMATION AND	Use of PowerPoin	t in lectures.
COMMUNICATIONS	Communication via email.	
TECHNOLOGY		
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	25
teaching are described in detail.	Laboratory practice	75
Lectures, seminars, laboratory	Writing individual	25
practice, fieldwork, study and	report	
analysis of bibliography,	Non directed study	25
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
	Course total	150
The student's study hours for		
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE		
EVALUATION	Student evaluation is don	e
Description of the evaluation	A) by written and oral exa	imination during the
procedure	laboratory exercise (30%)	concerning the degree
I manufaction	of understanding and ass	imilation of the
Language of evaluation,	theoretical knowledge, th	le control or the
methods of evaluation,	aboratory performance a	ind skill required to
summative of conclusive,	perform the experiments	and includes:
multiple choice questionnaires,	 snort -answer que 	stions
short-unswer questions, open-	 problem solving 	
solving written work	 analysis of individ 	ual samples
essay/report oral examination	 writing of individu 	al report (Includes entry
nublic presentation laboratory	of experimental re	esults, critical evaluation
work clinical examination of	of results, etc.)	
natient art interpretation		
other	The evaluation of the abo	ve results in the
	Laboratory Grade (LG) as	the average of the
Specifically-defined evaluation	individual laboratory exer	cises performed by the
criteria are aiven, and if and	student during the semes	ter.
where they are accessible to	B) Written final examinat	ion (70%) including:
students.	the development	of topics
	 short answer ques 	stions
	multiple choice ou	lestionnaires

So the Written Examination Grade (WEG) level
resulted.

- Suggested bibliography:

Ενόργανη Ανάλυση. Θ.Π. Χατζηιωάννου, Μ.Α. Κουππάρης. Πανεπιστήμιο Αθηνών, Αθήνα 2000.

Αρχές της Ενόργανης Ανάλυσης. D.A. Skoog, F.J. Holler, T.A. Nieman. Μετάφραση στα Ελληνικά: Μ. Καραγιάννης, Κ. Ευσταθίου, Ν. Χανιωτάκης. Εκδόσεις Κωσταράκης, Αθήνα, 2002.

Modern Analytical Chemistry. Editor: D. Harvey, 1st edn, McGraw-Hill, USA, 2000.

Ηλεκτροχημικοί Αισθητήρες και Βιοαιασθητήρες, Μ. Προδρομίδης, Εκδόσεις Κωσταράκη, Αθήνα 2014

Thick film technology and applications, M. Haskard and K. Pitt, Electrochemical Publications Ltd., 1997

- Related academic journals:

Journal of Chemical Education Analytical Chemistry Electrochimica Acta Journal of Chromatography A Analytica Chimica Acta Sensors and Actuators B chemical Electroanalysis

SCHOOL	Natural Sci	ences			
ACADEMIC UNIT	Departme	nt of Chemisti	Ŷ		
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IB01		SEMESTER	2 nd	d
COURSE TITLE	APPLICATIONS OF NANO-MATERIALS IN ANALYTICAL CHEMISTRY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ory exercises, etc. If the TEACHING CRED		CREDITS		
credits are awarded for the wh	whole of the course, give HOURS				
the weekly teaching hours a	eaching hours and the total credits		_		
					6
	• •• •				
Add rows if necessary. The organisation of teaching					
and the leaching methods used	are describe	ea în aetali			
	General ha	ckground sn	ecialization	ckill	c
aeneral background	developme	nt	ccialization,	JKIII	5
special background,	developing				
special buckground,					
knowledge, skills development					
PREREQUISITE COURSES:	No				
	-				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	No				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

This course introduces information about the basic principles of nanotechnology, the general classification and properties of nanomaterials, the methods for the synthesis of nanomaterials such as noble metal nanomaterials, magnetic nanomaterials, carbon nanotubes and quantum-carbon dots, the characterization techniques of nanomaterials, such as SPM, STM, AFM, XRD, XRF, Raman Spectroscopy, FT-IR, UV-Vis, TEM, SEM and applications of nanomaterials on the separation, preconcentration and determination of chemical substances with interest in clinical chemistry, food chemistry and environmental chemistry.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender
Team work	Criticism and self-criticism
Working in an international	Production of free creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

Search, analysis and synthesis of data and information, by using the proper technologies. Working independently Team work Promoting free, creative and inductive thinking Understanding analytical science, synthesis and characterization of nanomaterials

and demonstrate a coherent understanding of these practises

(3) SYLLABUS

1. Introduction to nanotechnology

- 1.1 Introduction
- 1.2. Historical view
- 1.3. The "Size" effect
- 1.4 Synthesis
- 1.5 Techniques
- 1.6 Technological development and applications
- 1.7 Nano-electronics

2. General classification and applications of nanomaterials.

2.1. Introduction

- 2.2. The effect of nanomaterial size on their properties
- 2.3. Properties of nano-materials
- 2.3.1. Mechanical Properties

2.3.2. Electrical Properties

2.3.3. Magnetic Properties

2.3.4. Optical Properties

2.3.5. Chemical Properties

2.4. Zero-dimension nanostructures- Nanoparticles

2.4.1. Gold nanoparticles

2.4.2. Silver nanoparticles

2.4.3. Noble metal nanoparticles

2.4.4. Metal oxide nanoparticles

2.5. Quantum dotsς

2.6. One dimensional nanostructures-Nanowires

2.7. Two-dimensional nanostructures - Films

2.8 Three-dimensional nanostructures

3. Synthesis and Characterization of nanomaterials

3.1. Introduction

3.2 Synthesis of gold nanoparticles

3.3 Synthesis of silver nanoparticles

3.4 Noble metal nanoparticles

3.5 Magnetic nanoparticles

3.6. Characterization of nanomaterials

3.6.1. Scanning Probe Microscopy-SPM

3.6.2. Atomic Force Microscopy-AFM

3.6.3. SFA/AFM

3.6.4. Magnetic Force Microscopy-MFM

3.6.5. Auger Electron Spectroscopy-AES

3.6.6. XPS

3.6.7. Raman

3.6.8. X Ray Diffraction- XRD

3.6.9. SEM / TEM

3.6.10. UV/Vis

4. Applications of nanomaterials in Analytical Chemistry

4.1 Introduction

4.2. Sensors based on nanoparticle aggregation / de-aggregation

4.2.1 Direct aggregation / de-aggregation

4.2.2 Aided aggregation

4.2.3 Aided de-aggregation

4.2.4 Indirect aggregation

4.2.5. Reversed de-aggregation

4.2.6. Competitive de-aggregation

4.3. Sensors based on analyte-mediated formation or decomposition of nanoparticles

4.3.1. Analyte mediated Etching/decomposition of nanoparticles

4.3.2. Analyte mediated reduction of gold ions to gold nanoparticles

4.3.3. Analyte mediated reduction of gold ions to gold nanoparticles and aggregation of nanoparticles

4.3.4. kinetically controlled analyte-mediated nanoparticle assays

4.3.5. Analyte-mediated shape-controlled formation of nanoparticles

4.4. Sensor Arrays

4.5 Fluorescence methods based on nanoparticles

4.5.1. Fluorescence emission by replacing nanoparticle surface coating

4.5.2. Fluorescnece emission/quenching via the inner filter effect

4.5.3. Ratiometric fluorescence nano-sensors / probes of constant emission wavelength

4.5.4. Ratiometric fluorescence nano-sensors / probes of variable emission wavelength

- 4.6. Imaging applications
- 4.6.1. Tissue/organ/bone imaging
- 4.6.2. Cell imaging
- 4.7. Immunoassays
- 4.7.1. Optical immunoassays
- 4.7.2. Chemiluminescence immunoassays
- 4.8. Electrochemical methods
- 4.9. Surface-enhanced Raman spectroscopy (SERS)
- 4.10. Magnetic solid phase extraction

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of Power Point in lec	tures.
COMMUNICATIONS	Communication via emai	l.
TECHNOLOGY	Laboratory education	
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	42
teaching are described in detail.	Presentations by the	15
Lectures, seminars, laboratory	students	
practice, fieldwork, study and	Homework and	50
analysis of bibliography,	preparation	
tutorials, placements, clinical	Study and analysis of	40
practice, art workshop,	bibliography	
interactive teaching,	Exams	3
educational visits, project, essay		
writing, artistic creativity, etc.		
The studentle study house for		
The student's study nours for		
as well as the hours of non	Course total	150
directed study according to the		
nrinciples of the ECTS		
STUDENT DEREORMANCE		
FVALUATION		
Description of the evaluation		
procedure		
procedure		

Written examination in Greek, with multiple
choice questionnaires and short-answer
questions.
Assay writing / project evaluation

SUGGESTED BIBLIOGRAPHY: :

• Nanomaterials. An Introduction to Synthesis, Properties and Applications Second Edition. D. Vollath, Wiley-VCH, 2013.

• Chemistry of Nanomaterials. Fundamentals and Applications, T.I. Awan, A. Bashir, A. Tehseen, Elsevier, 2020.

• Nanomaterials. The original product of nanotechnology, M. Benelmekki, Morgan & Claypool Publishers, 2019.

RELATED ACADEMIC JOURNALS:

- PROGRESS IN MATERIALS SCIENCE
- NANO LETTERS
- ADVANCED MATERIALS
- MICROCHIMICA ACTA
- ANALYTICA CHIMICA ACTA
- ANALYTICAL CHEMISTRY
- ACS SENSORS
- ACS APPLIED MATERIALS AND INTERFACES
- JOURNAL OF MATERIALS CHEMISTRY

SCHOOL	SCHOOL O	F SCIENCES			
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY				
LEVEL OF STUDIES	Graduate studies				
	Field: Anal	ytical Chemis	try, Environn	nent	tal and
	Food Chen	nistry and Tec	hnology		
COURSE CODE	IBO2		SEMESTER	В	
COURSE TITLE	ADVANCED COURSES IN FOOD PROCESSING AND FOOD PACKAGING				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepai	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	ì	CREDITS
credits are awarded for the wh	hole of the course, give HOURS				
the weekly teaching hours o	and the tota	l credits			
			3		6
Add rows if necessary. The orga	ganisation of teaching				
and the teaching methods used	ed are described in detail				
at (d).	a				
COURSE TYPE	Specialised	l knowledge			
general background,					
special background,					
specialisea general					
	NO				
PREREQUISITE COURSES:	NU				
	Greek				
and EXAMINATIONS:	OTEEK				
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After the successful completion of the course, graduate students will be able to understand special issues of food processing and packaging so that they can deal with their daily working life based on the knowledge they have acquired. They will be able to understand the developments of food processing, and packaging. Developments in the food industry aim to produce high quality, safe and less processed foods. To achieve this, the food production and packaging processes must be properly selected and managed. In addition, better management of resources, packaging materials and the environment (through recycling) is required.

Postgraduate students will be asked to study through the literature topics related to the thematic units of the course as well as to solve and/or compare corresponding topics and problems.

In addition, they will be able to search the literature using modern technologies for topics related to food processing and packaging.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

Search for, analysis and synthesis of data and information, with the use of the necessary technology. Working independently. Production of new research ideas. Respect to natural environment. Practice criticism and self-criticism. Promoting free, creative and inductive thinking.

(3) SYLLABUS

The main topics of the course are:

A. Packaging materials (metal, glass, paper-cardboard, plastics) - Chemistry, shaping, properties. High barrier materials in food packaging (laminated, bonded, metallized).B. Interaction of packaging materials with food (migration, permeability, flavor scalping).

C. Intelligent and active food packaging (definition, types, applications in food)

D. Modified Atmosphere Food Packaging

E. Aseptic packaging and packaging for microwaves

F. New and emerging methods of food processing and preservation (Irradiation, High Hydrostatic Pressure, Ohmic and Dielectric Heating, Pulsed Electric and Magnetic Fields, Ultrasound, etc.)

G. Packaging - Environmental Performance (Green consumerism and modern trends, Types of green packaging and necessity of use, Principles of alternative packaging management, Application of techniques "for a world without waste").

DELIVERY	Face-to-face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Use of Power point for lea	ctures.	
COMMUNICATIONS	Communication with grad	luate students via email	
TECHNOLOGY	and video conference		
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	70	
teaching are described in detail.	Project	40	
Lectures, seminars, laboratory	Personal study	40	
practice, fieldwork, study and			
analysis of bibliography,			
tutorials, placements, clinical			
practice, art workshop,			
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.	Total 150		
The student's study hours for			
each learning activity are given			
as well as the hours of non-			
directed study according to the			
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION	The language is Greek.		
Description of the evaluation	Individual bibliographic pi	roject on a specific topic	
procedure	within the scope of the co	ourse (50%).	
	written exam with develo	prinent, multiple choice	
Language of evaluation,	and judgment questions (50%).		
metricas oj evaluation,	The grade of the written exam should be at least		
summative or conclusive,	5/10 to pass the course.		
multiple choice questionnaires,			
short-answer questions, open-			

ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other
Specifically-defined evaluation
criteria are given, and if and
where they are accessible to
students.

Suggested bibliography: ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ των διδασκόντων, Πανεπιστήμιο Ιωαννίνων (Professors' notes of course, University of Ioannina) Food Processing Technology, P. Fellows, CRC Press, 2000 Food Packaging Science and Technology, D.S. Lee, K.L. Yam, L. Piergiovanni, CRC Press, 2008. Food Packaging, Principles and Practice, G.L. Robertson, Marcel Dekker, 1993. Structure – Property Relationships in Polymers, R.B. Seymour & C.E. Carraher, Jr., Plenum Press, 1984. Packaging Design and Performance, F. Paine, Pira, 1990. Mechanical Properties of Polymers and Composites, L. E. Nielsen, Marcel Dekker, 1984.

Related Scientific Journals: Food Chemistry Food Research International European Food Research and Technology Food Packaging and shelf life

SCHOOL	Natural Sciences				
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate: FIELD: Analytical Chemistry, Environmental and Food Chemistry and Technology				
COURSE CODE	IB03		SEMESTER	2 nd	1
COURSE TITLE	SPECIAL SUBJECTS ON FOOD QUALITY AND SAFETY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	6	CREDITS
credits are awarded for the wh	hole of the course, give HOURS				
the weekly teaching hours o	and the tota	l credits			
			3		6
Add rows if necessary. The orga	ganisation of teaching				
and the teaching methods used	d are described in detail				
at (d).		-			
COURSE TYPE	Specializat	ion			
general background,					
special background,					
specialised general					
knowledge, skills development	•				
PREREQUISITE COURSES:	NO				
	Creak				
and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	No				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course, level 6 of the European Qualifications Framework, students will be able to understand special issues of food quality, safety and entrepreneurship so that they can deal with their daily working life better after their studies. Thus, they can better understand the procedures that a food company is required to implement to ensure continuous and uninterrupted high-level safety and quality of the food products it produces, combined with an understanding of general issues of sound business operation and development in order to have an overall picture of the relevant operations, decisions and strategies in said matters. Students will be able to solve problems and exercises related to the topics of the course. In addition, they will be able to search the literature using modern technologies.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking			
environment Working in an interdisciplinary	thinking 			
environment Production of new research ideas	Others			
Search, analysis and synthesis of data and information, by using the proper				

technologies.

Autonomous work

Practice criticism and self-criticism.

Promoting free, creative and inductive thinking

(3) SYLLABUS

The main sections of the course are the following:

. TOTAL QUALITY MANAGEMENT (Basic principles – historical review – quality control tools).

. FOOD QUALITY CONTROL (Introduction – quality control methods – ISO 9000 and ISO 22000 quality management standards)

. FOOD SAFETY MANAGEMENT SYSTEMS (HACCP systems – good agricultural practices (GAPs) – good manufacturing practices (GMPs)

. ENVIRONMENTAL MANAGEMENT SYSTEMS (ISO 14000) (Introduction – environmental management standard ELOT EN ISO 14001:2015 – European ecological management and control system

. ENTREPRENEURSHIP (the concept of business and its environment – business management)

. BUSINESS PLAN (definition – utility – creation)

DELIVERY	Face to face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Use of PowerPoint in lectures.		
COMMUNICATIONS	Communication via email		
TECHNOLOGY			
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	70	
teaching are described in detail.	Study and analysis	40	
Lectures, seminars, laboratory	related literature		
practice, fieldwork, study and		40	
analysis of bibliography,			
tutorials, placements, clinical			
practice, art workshop,			
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
	Course total 150		
The student's study hours for			
each learning activity are given			
as well as the hours of non-			
directed study according to the			
principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION			
Description of the evaluation			
procedure	M/r	V) in Creak with aith an	
Language of ovaluation	multiple choice question	%) III Greek, with either	
matheds of evaluation,	questions	Idires and or answer	
summative or conclusive	Writton work on special r	project submitted (50%)	
multiple choice questionnaires		Joject Submitted (50%).	
short-answer questions open-			
ended questions problem			
solving, written work			
essav/report_oral examination			
public presentation laboratory			
work, clinical examination of			
patient. art interpretation			
other			

Specifically-defined evaluation
criteria are given, and if and
where they are accessible to
students.

- Suggested bibliography (in Greek):
«INTRODUCTION TO MANAGEMENT» Kate Williams, Bob Johnson, ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
ISBN: 960-218-446-9 (1 ^η έκδοση 2005)
«BUSINESS ADMINISTRATION» Brian Williams, Angelo Kinicki, ΕΚΔΟΣΕΙΣ ΕΠΙΚΕΝΤΡΟ
ISBN: 978-960-458-702-5 (1 ^η έκδοση 2017)
«BUSINESS PROGRAMMING» James Taylor, ΕΚΔΟΣΕΙΣ ΚΡΙΤΗΡΙΟΝ
ISBN: 960-7433-10-6
«HACCP – THE QUALITY PROCESS WITH APPLIED EXAMPLES» Ευάγγελος
Ευμορφόπουλος, ΕΚΔΟΣΕΙΣ ΕΥΔΟΞΟΣ
ISBN: 978-6185-2521-82
«ISO 9000 και ISO 14000 ΤΟ THE FOOD AND DRINK INDUSTRY» Ευστρατιάδης Μ.Μ.,
Μπουντουρόπουλος Ι.Δ., ΕΚΔΟΣΕΙΣ UNIVERSITY STUDIO PRESS
ISBN: 960-7433-10-6
«ANALYSIS OF DANGER AT THE CRITICAL POINTS OF CHECKING IN THE FOOD
INDUSTRY (HACCP) ΣΤΗ ΒΙΟΜΗΧΑΝΙΑ ΤΡΟΦΙΜΩΝ» Τζιά Κωνστανταντίνα,
Αλέξανδρος Τσιαπούρης
ISBN: 978-9607-5103-58

SCHOOL	SCHOOL OF SCIENCES				
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY				
LEVEL OF STUDIES	Postgradua	ate studies			
	Field: Anal	ytical Chemist	try, Environn	nent	tal and
	Food Chen	nistry and Tec	hnology		
COURSE CODE	IB04		SEMESTER	В	
COURSE TITLE	ADVANCED LABORATORY IN FOOD ANALYSIS AND TECHNOLOGY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepai	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	6	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours a	and the tota	l credits			
			5		12
Add rows if necessary. The organ	nisation of t	eaching			
and the teaching methods used	ed are described in detail				
at (d).					
COURSE TYPE	Specialised	l knowledge,	skills develop	ome	nt
general background,					
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The graduated students will be trained and will use instrumental analytical techniques regarding the food safety, quality, food characterization and authentication, food packaging etc. In addition, they are trained in organoleptic evaluation and assessment of food.

This training provides them with knowledge, experience and skill development in food analysis, evaluation of results, troubleshooting during analysis, comparison with literature data and writing a final opinion.

Searching the literature using modern technologies is necessary for the final writing of the laboratory report of analysis and evaluation of the food samples given to them

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

Search for, analysis and synthesis of data and information, with the use of the necessary technology. Working independently. Team work. Production of new research ideas. Practice criticism and self-criticism. Promoting free, creative and inductive thinking.

(3) SYLLABUS

The training on the laboratory includes: Structure identification of multilayer packaging materials (identification, measurement of contribution layers, mechanical properties, permeability measurement). Determination of volatile compounds by the SPME/GC-MS technique. Determination of sugars in food by HPLC-RI. Determination of organic acids in food by HPLC-UV/Vis. Measurement of mechanical properties of food with an Instron dynamometer (puncture, texture profile analysis). Measurement and evaluation of food color (HunterLab colorimeter). Measurement and evaluation of food viscosity. Organoleptic evaluation of food (aroma, taste, color, evaluation and assessment of preference).

	Face to face laboratory			
DELIVERY	Face-to-face, laboratory training			
Face-to-face, Distance learning,				
USE OF INFORMATION AND	Use of Power point for lai	ooratory courses.		
COMMUNICATIONS	Communication with grad	duate students via email		
	and video conference			
Use of ICT in teaching,				
laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Tutorial preparation	20		
teaching are described in detail.	lectures			
Lectures, seminars, laboratory	Laboratory practise	140		
practice, fieldwork, study and	Report writing	70		
analysis of bibliography,	Personal study	70		
tutorials, placements, clinical				
practice, art workshop,				
interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
	Total	300		
The student's study hours for				
each learning activity are given				
as well as the hours of non-				
directed study according to the	·			
principles of the ECTS				
STUDENT PERFORMANCE				
EVALUATION	Greek language.			
Description of the evaluation	Average performance in t	he Laboratory through		
procedure	oral examination and rep	orts (50%).		
	Writing evaluation (short answers, problem-			
Language of evaluation,	solving, open-ended questions, judgement			
methoas of evaluation,	questions) (50%).			
summative or conclusive,	I ne grade of the written of	exam should be at least		
multiple choice questionnaires,	5/10 to pass the course.			
snort-answer questions, open-				
enaea questions, problem				
solving, written work,				
essay/report, oral examination,				
public presentation, laboratory work, clinical examination of patient, art interpretation, other				

Specifically-defined evaluation criteria are given, and if and				
where they are accessible to students.				

Suggested bibliography:

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ, Μπαδέκα, Αναπλ. Καθ., Πανεπιστήμιο Ιωαννίνων (Laboratory instructions and notes, A. Badeka, Assi. Prof. University of Ioannina)

Food Analysis, Nielsen S., Springer 2010. Handbook of Food Analysis. Nollet L.M.L., Marcel Dekker 2004.

Related Scientific Journals:

Food Chemistry Food Research International Journal of Agricultural and Food Chemistry Journal of Food composition and Analysis Food Research International Food Control

SCHOOL	NATURAL SCIENCES				
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IB02 SEMESTER 2				
COURSE TITLE	LABORATORY OF ENVIRONMENTAL POLLUTION CONTROL				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	G	CREDITS
credits are awarded for the wh	hole of the course, give HOURS				
the weekly teaching hours o	and the tota	l credits			
L	ABORATOR	Y EXERCISES	6		12
TOTAL			78		
Add rows if necessary. The orga	ganisation of teaching				
and the teaching methods used	ds used are described in detail				
at (d).					
COURSE TYPE	Specialized knowledge / skills development			ent	
general background,					
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION	GREEK				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After the successful completion of the course, descriptive level 7 of the European Qualifications Framework for Lifelong Learning, the students will be capable to:

• Understand deeply methods, techniques and instrumentation used in pollution control and environmental analysis.

• to use their knowledge and skills in applications and problem-solving, within an interdisciplinary context, relevant to their field of knowledge.

General Competences				
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma				
Supplement and appear below), at which of the johowing t				
Search for, analysis and synthesis of data and	Project planning and management			
information, with the use of the necessary technology	Respect for difference and multiculturalism			
Adapting to new situations	Respect for the natural environment			
Decision-making	Showing social, professional and ethical responsibility and			
Working independently	sensitivity to gender issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment				
Production of new research ideas	Others			

• Application of knowledge dealing with advanced methods, techniques and technologies for environmental analysis and pollution control.

• Inquiring of theoretical and practical background for performing further education, postgraduate and doctoral studies.

• Utilization of laboratory infrastructures and equipment for the above-mentioned aims

• Search for, analysis and synthesis of data and information, with the use of the necessary instrumentation

• Inquiring the necessary learning skills that allow them to continue their studies in a largely self-reliant or even autonomous manner.

• Possesses specialized problem-solving skills, which are required in research and/or innovation in order to develop new knowledge and processes and integrate knowledge from different fields.

- Theoretical knowledge and bringing-applying theory to practice
- Team work as well as working independently
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for the natural environment

(3) SYLLABUS

Standards methods for the examinations of physicochemical parameters of water and wastewaters (pH, conductivity, dissolved oxygen, total solids, turbitity, etc), Determination of Biochemical Oxygen Demand, Chemical Oxygen Demand, Total Organic carbon, Elemental analysis, Determination of total phenols by UV-Vis, Determination of Chromium (VI), Determination of anions and cations by ion chromatography, Characterization of natural waters by spectrophotometry and fluorescence, QuEChERS extraction and liquid-solid extraction of pesticides and organic contaminants from environmental and food matrices coupled by gas and liquid chromatography, Mass spectrometry, Toxicity bioassay (*Vibrio Fisheri*), Scanning Electron microscopy (SEM) of environmental particles.

(4) TEACHING and LEARNING METHODS – EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face to Face	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of Technologies of Information and communications in teaching of the theoretical part and communication with students.	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Laboratory practice	78
described in detail.	Laboratory essay	117

Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Bibliography study	105
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Written team (2 or 3 stude laboratory exercise Evaluation criteria: (α) Pleni quality of experimental resu and interpretation of data (A	nts) essay/project for every itude of essay (30%), (β) ults (30%), (γ) treatment 40%)

- Suggested bibliography (in Greek):

1) Notes/Presentations of Instructors

2) Instrumental Environmental Analysis, I. Deliginnakis, D. Hela, I. Konstantinou, Eds. Tziola. *ISBN:* 978-960-418-233-6

- Related academic journals:

1) Modern Environmental Analysis Techniques for Pollutants, 2020, ISBN 978-0-12-816934-6

2) Trends in Environmental Analytical Chemistry

3) International Journal of Environmental Analytical Chemistry

4) Environmental Pollution

5) Environmental Science and Pollution Research

FIELD II

CHEMISTRY, PHYSICAL CHEMISTRY AND MATERIALS TECHNOLOGY -EPISTEMOLOGY

(1) GENERAL

SCHOOL	NATURAL SCIENCES			
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY			
LEVEL OF STUDIES	Postgraduate			
COURSE CODE	IIA01 SEMESTER 1			1
COURSE TITLE	SURFACE PHENOMENA, HETEROGENEOUS CATALYSIS, PHOTOCATALYSIS			
INDEPENDENT TEACH	ING ACTIVITIES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY	
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	CREDITS
credits are awarded for the w	hole of the c	ourse, give	HOURS	
the weekly teaching hours and	i the total cr	eaits(ECIS)	2	6
	Lectures		3	6
			20	6
Total			39	D
Add rows if pacassary. The orga	II			
and the teaching methods used	d are described in detail			
at (d).		in actai		
COURSE TYPE	Specialized	d knowledge /	skills develor	ment
general background,	l .	0.		
special background,				
specialised general				
knowledge, skills development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	Greek			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area.
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning.

• Guidelines for writing Learning Outcomes .

After the successful completion of the course, descriptive level 7 of the European Qualifications Framework for Lifelong Learning, the students will be capable to:

• Understand deeply principles and develop skills related to surface science and applications of materials in adsorption and catalytic technologies in the industry and the environmental protection

• to use their knowledge and skills in applications and problem-solving, within an interdisciplinary context, relevant to their field of knowledge.

General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?			
Search for, analysis and synthesis of data and	Project planning and management		
information, with the use of the necessary technology	Respect for difference and multiculturalism		
Adapting to new situations	Respect for the natural environment		
Decision-making	Showing social, professional and ethical responsibility and		
Working independently	sensitivity to gender issues		
Team work	Criticism and self-criticism		
Working in an international environment	Production of free, creative and inductive thinking		
Working in an interdisciplinary environment			
Production of new research ideas	Others		

• Application of knowledge dealing with advanced methods, techniques and technologies for environmental protection and materials characterization and applications.

• Inquiring of theoretical and practical background for performing further education, postgraduate and doctoral studies.

• Utilization of laboratory infrastructures and equipment for the above-mentioned aims

• Search for, analysis and synthesis of data and information, with the use of the necessary technology

• Inquiring the necessary learning skills that allow them to continue their studies in a largely self-reliant or even autonomous manner.

• Possesses specialized problem-solving skills, which are required in research and/or innovation in order to develop new knowledge and processes and integrate knowledge from different fields.

- Theoretical knowledge and bringing-applying theory to practice
- Team work as well as working independently
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for the natural environment

(3) SYLLABUS

Heterogeneous catalysis, kinetics of heterogeneous catalytic reactions, acid-base and redox reactions, determination of acidic and basic surface sites, mechanisms of acid-base reactions of dehydration of alcohols, isomerization of alkenes and decomposition of hydrocarbons, redox reactions: conductivity of materials and application of redox heterogeneous catalysis in antipollution technologies for mobile and stationary sources (Three-way catalysts and Selective Catalytic Reduction), Fuel cells, membranes of ceramic materials, structure and characteristics of the main types of cells, Fractal dimension of surfaces, fractal surfaces in nature and shapes with fractal dimension, determination of fractal dimension of ceramic surfaces of materials, Colloidal systems, Classification of dispersion systems, Preparation and purification of dispersion systems, Brownian motion, Osmosis, Diffusion, Sedimentation, and Properties of dispersion systems (optical, electrical, etc) – Potential (measurement,

applications, etc.), DLVO theory of colloids stability, Aggregation-Thrombosis-Flocculation, The importance of colloids (Industry, Biology, Medicine, Agriculture,), Surfactant or surfaceactive compounds (characteristics, categories, structures), Micelle formation mechanism, Critical micelle concentration (cmc), Decontamination, Foaming agents, Anti-fogging agents, Ore enrichment, Preparation of ceramics for special uses, Emulsions-Microemulsions, factors affecting the structure of emulsions, Adsorption on technological and natural materials, Properties of adsorbent materials (activated carbons, zeolites, etc.), Applications in the removal of pollutants and the recovery of valuable materials, Basic principles of Photocatalysis, Homogeneous Photocatalysis (photo-Fenton, etc.), Heterogeneous photocatalysis, Principles- Mechanisms, Modification of catalysts (doping with metals, nonmetals), Composite photocatalysts (Types I, II, biomimetic z-schemes), Oxidant activation catalysts (persulfate, peroxymonosulfate, etc), Applications in pollutant degradation and energy production.

DELIVERY	Face to Face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Use of Technologies of Information and		
COMMUNICATIONS	communications in teaching	and communication with	
TECHNOLOGY	students.		
Use of ICT in teaching, laboratory			
education, communication with			
students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	39	
teaching are described in detail.	Written essay	45	
Lectures, seminars, laboratory	Bibliography study	66	
practice, fieldwork, study and			
analysis of bibliography, tutorials,			
placements, clinical practice, art			
worksnop, interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
The student's study hours for each			
learning activity are given as well	Σύνολο Μαθήματος	150	
as the hours of non-directed study			
according to the principles of the			
ECTS			
STUDENT PERFORMANCE	Written essay/project		
EVALUATION	Evaluation criteria: (a) Pleni	tude of essay (25%), (b)	
Description of the evaluation	quality and treatment, interpretation of data (30%), (c)		
procedure	oral presentation (25%) (d) s	short questions during oral	
	presentation (20%)		
Language of evaluation, methods			
of evaluation, summative or			
conclusive, multiple choice			
questionnaires, short-answer			
questions, open-ended questions,			
problem solving, written work,			
essay/report, oral examination,			

(4) TEACHING and LEARNING METHODS - EVALUATION

public presentation, laboratory work, clinical examination of patient, art interpretation, other
Specifically-defined evaluation criteria are aiven, and if and where
they are accessible to students.

Suggested bibliography (in Greek): Notes/Presentations of professors, Review papers
Related academic journals:

Colloids and Surfaces A: Physicochemical and Engineering Aspects
Applied Surface Science
Applied Catalysis B:Environmental
Catalysis Today
Chemical Engineering Journal
Industrial and Engineering Chemistry

SCHOOL	NATURAL SCIENCES				
ACADEMIC UNIT	CHEMISTRY				
LEVEL OF STUDIES	POST-GRADUATE				
COURSE CODE	IIA02 SEMESTER A				
COURSE TITLE	SYNTHESIS OF ADVANCED AND NANOSTRUCTURED MATERIALS				
INDEPENDENT TEACHI	IING ACTIVITIES				
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ory exercises, etc. If the TEACHING CREDITS			5	
credits are awarded for the wh	hole of the course, give HOURS				
the weekly teaching hours a	and the tota	l credits			
			3	6	
	· .·				
Add rows if necessary. The organisation of teaching					
at (d)	sed are described in detail				
	Special background specialized general knowledge				
aeneral background		ckground, spc	cialized gene		C
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	NONE				
LANGUAGE OF INSTRUCTION	GREEK				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

Guidelines for writing Learning Outcomes

After successfully completing the course, graduate students should be able to:

- Understand basic principles of synthetic chemistry of nanostructured materials and especially non-classical synthetic techniques.
- Solve synthetic problems and be able to propose alternative synthetic pathways when classic solutions that are related to the above principles fail.

More specifically:

1. Familiarize themselves with the chemical strategies towards the synthesis of chalcogenic materials, halogenated perovskites, graphitic allotropes, metal-organic frameworks (MOF), ceramic materials and inorganic oxides.

2. Familiarize themselves with hydrothermal / solvothermal techniques of chemical functionalization or doping of the lattice of nanostructured materials

3. Familiarize themselves with protocols related with hydrolysis/condensation schemes in sol-gel processes.

4. Know specific safety measures for dangerous synthetic procedures.

5. Familiarize themselves with either bottom up (chemical vapor deposition, laser ablation, arc discharge) or top-down (sonication-assisted exfoliation) techniques.

Knowledge

Deepening the basic concepts of synthesis in variable synthetic conditions and distinct knowledge on principles and theories related to the synthesis of nanostructured materials.

Skills

Advanced problem-solving skills through careful analysis of the provided data. Abilities

Ability to apply the provided knowledge to the problems (theoretical and synthetic) related to synthetic chemistry of nanostructured materials.

Ability to propose synthetic pathways and safety measures for the synthesis of nanomaterials.

Ability to work independently and to interact with other students on the subject.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	
The general competencies that the stu	dont should have acquired and to which the

The general competencies that the student should have acquired and course is aimed are:

Search, analyze and synthesize data and information and make decisions.

Conversion of theory into practice.

Promote free, creative and inductive thinking.

Autonomous but also teamwork capability.

Acquiring the appropriate theoretical and practical knowledge base to enable further education both at a theoretical level (in more specific subjects of Materials Chemistry) and in a laboratory.

Pay respect to environment by employing green precursor substances and store any reaction wastes

Capability of survey, analysis of data and details taken form international literature as well as utilization of appropriate tools related to the presentation of research results.

(3) SYLLABUS

Chalcogenic materials - Halogenated perovskites - Graphitic allotropes – Chemical functionalization of graphitic nanostructures - Metal-organic frameworks (MOF) – Sol-gel synthesis of inorganic oxides – Synthesis of ceramic materials – Synthesis of supported catalysts – Chemistry of precursor substances for materials fabrication – Surface chemical functionalization of advanced and nanostructured matrices

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	- Use of ICT in teaching		
COMMUNICATIONS	- Email communication w	ith students	
TECHNOLOGY			
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	39	
teaching are described in detail.	Essay writing	45	
Lectures, seminars, laboratory	Non-directed study	66	
practice, fieldwork, study and			
analysis of bibliography,			
tutorials, placements, clinical			
practice, art workshop,			
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.	Total	150	
The student's study hours for			
each learning activity are given			
as well as the hours of non-			
directed study according to the			
nrinciples of the ECTS			

STUDENT PERFORMANCE	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Students are evaluated (in Greek) in a combined mode, by presenting to the teaching committee and individual public audience of a project (essay) as well as by final written examination. The latter exam includes questions and problems (multiple choice, short response, problem solving). The written examination and the presentation of the essay have equal impact to the final grade (50% : 50%)
criteria are given, and if and	
where they are accessible to	
students.	

Nanomaterials Synthesis, *Design, Fabrication and Applications*, 2019 (1^η έκδοση), Elsevier, Editors: Yasir Beeran Pottathara, Sabu Thomas, Nandakumar Kalarikkal, Yves Grohens, Vanja Kokol, Paperback ISBN: 9780128157510

Synthesis of Nanomaterials, *Mechanisms, Kinetics and Materials Properties*, 2020, Springer, Author: S. Noor Mohammad, Hardcover ISBN: 978-3-030-57584-7

SCHOOL	NATURAL	NATURAL SCIENCES		
ACADEMIC UNIT	CHEMISTRY			
LEVEL OF STUDIES	POST-GRADUATE			
COURSE CODE	IIA03		SEMESTER	Α
COURSE TITLE	COMPUTATIONAL CHEMISTRY – STATISTICAL MECHANICS – STRUCTURE AND PROPERTIES			
INDEPENDENT TEACHI	NG ACTIVIT	IES		
if credits are awarded for separ	rate compor	nents of the	WEEKLY	
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	G CREDITS
credits are awarded for the wh	hole of the course, give HOURS			
the weekly teaching hours o	and the tota	l credits		
			3	6
	-			
Add rows if necessary. The orga	rry. The organisation of teaching			
and the teaching methods used	ed are described in detail			
at (a).				
COURSE I YPE	Special bac	скground, spe	cialized gene	eral knowledge
general background,				
special background,				
specialised general				
FRENEQUISITE COURSES.	NONL			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:	•••••			
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After the successful completion of the course, the postgraduates. students should be able to: • To understand basic principles of Computational Chemistry and Statistical Engineering. Solve synthetic problems and be able to propose relationships between the structure and properties of materials in all phases. More specifically: 1) Calculation of equilibrium constants of chemical reactions from molecular characteristics and Calculation of thermodynamic properties using the Monte Carlo method. 2) Familiarity with the basic algorithms of molecular dynamics and the Computational methodologies for determining structure, spectroscopic constants and energy parameters of molecular systems. 3) Correlation of crystal structure with the activity of solids. 4) Correlation of crystal structure with adsorption phenomena. 5)Fluorescence phenomena in the solid state. Skills Advanced problem-solving skills through careful analysis of the provided data. Abilities Ability to apply the provided knowledge to solving problems (theoretical and synthetic) related to Computational Chemistry and Statistical Engineering. Ability to both work independently and interact with other students on course topics. **General Competences** Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of Project planning and management data and information, with the use of Respect for difference and multiculturalism the necessary technology Respect for the natural environment Adapting to new situations Showing social, professional and ethical Decision-making responsibility and sensitivity to gender Working independently issues Team work Criticism and self-criticism Production of free, creative and inductive Working in an international environment thinking Working in an interdisciplinary environment Others... Production of new research ideas The general competencies that the student should have acquired and to which the course is aimed are: Search, analyze and synthesize data and information and make decisions. Conversion of theory into practice. Promote free, creative and inductive thinking. Autonomous but also teamwork capability.

Acquiring the appropriate theoretical and practical knowledge base to enable further education both at a theoretical level (in more specific subjects of Materials Chemistry) and in a laboratory.

Pay respect to environment by employing green precursor substances and store any reaction wastes

Capability of survey, analysis of data and details taken form international literature as well as utilization of appropriate tools related to the presentation of research results.

(3) SYLLABUS

Summary of basic concepts of Statistical Thermodynamics. The concept of the statistical set in the description of the macroscopic system. Calculation of equilibrium constants of chemical reactions from molecular characteristics. The Metropolis Monte Carlo method. Calculation of thermodynamic properties using the Monte Carlo method. Basic molecular dynamics algorithms. The Verlet algorithm. Periodic boundary conditions. Temperature control. Correlations of electronic structure and properties of molecules Isobolic Ratio Model Computational methodologies for determining structure, spectroscopic constants and energy parameters of molecular systems. Brief description of computational algorithms and what they can calculate. The concept of the dynamic surface of a molecular system. Energy barriers and minima and the importance of surface dynamics in Chemical Kinetics. Correlation of crystal structure with the activity of solids. Regiochemical reactions in solids. Correlation of crystal structure with activity of pharmaceutical solids. Amorphous, polymorphic and eutectic forms. Molecular Porous solids. Correlation of crystal structure with adsorption phenomena. Fluorescence phenomena in the solid state. Applications to molecular thermometers.

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	- Use of ICT in teaching	
COMMUNICATIONS	- Email communication w	ith students
TECHNOLOGY		
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	39
teaching are described in detail.	Essay writing	45
Lectures, seminars, laboratory	Non-directed study	66
practice, fieldwork, study and		
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.	Total	150
The student's study hours for		
each learning activity are given		
as well as the hours of non-		

(4) TEACHING and LEARNING METHODS - EVALUATION

directed study according to the	
principles of the ECTS	
STUDENT PERFORMANCE	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Students are evaluated (in Greek) in a combined mode, by presenting to the teaching committee and individual public audience of a project (essay) as well as by final written examination. The latter exam includes questions and problems (multiple choice, short response, problem solving). The written examination and the presentation of the essay have equal impact to the final grade (50% : 50%)
criteria are given, and if and	
where they are accessible to	
students.	

Μοριακές Κβαντικές Καταστάσεις και Στατιστική Θερμοδυναμική, 2018 (1η έκδοση), Εκδόσεις Συμμετρία, Α. Μυλωνά-Κοσμά, Α. Γ. Καλαμπούνιας, ISBN: 978-960-266-473-5

Exploring Chemistry with Electronic Structure Methods, 1996, Gaussian Inc. Pittburgh, PA, Authors: James N. Foresman, Aellen Frisch ISBN: 0-9636769-3-8

RELATED JOURNALS JOURNAL OF CHEMICAL PHYSICS JOURNAL OF PHYSICAL CHEMISTRY PHYSICAL CHEMISTRY CHEMICAL PHYSICS

SCHOOL	Natural Sci	Natural Sciences			
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIA04		SEMESTER	1 st	
COURSE TITLE	TECHNOLOGY OF MATERIALS FROM OIL AND BIOMASS				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for separ	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	G	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours o	and the tota	l credits			
	Lectures		3		6
Add rows if necessary. The organisation of teaching					
and the teaching methods used are described in detail					
at (d).					
COURSE TYPE	Scientific area, special background, specialised		ialised		
general background,	general knowledge				
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	None				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After successfully completing the course, descriptive marker 7 of the European Qualifications Framework, students should be able to:

 Understand the basic princiles of 4th and 5th industrial revolutions, of sustainability, of Circular Economy and Bioeconomy, of Sustainable Unit Operations and Chemical Processes applied in Petrochemical Industry and Biomass refineries (Biorefineries).

Solve problems of Chemical Product Design, Green Chemistry and Green Chemical Technology. Knowledge

Deepening the basic concepts of industrial Unit Operations and Chemical Processes, energy and fossil fuels, petrochemicals, biofuels, materials and chemicals from Biomass, Green Chemical Technology.

Skills

Advanced problem-solving skills through careful analysis of the provided data. **Abilities**

Ability to apply the provided knowledge to the design of industrial processes and chemical product design.

Ability to work independently and to interact with other students on the subject. Ability to search for data, data analysis, using new technologies, to respect the environment.

Students will gain basic knowledge in issues of fossil fuels, unit operations applied in petroleum refinery and in petrochemicals, their properties and uses, in Green Chemical Technology and production of green chemicals and fuels from biomass by using the biorefinery. They will also be taught to respect the environment. Their survey and bibliographic work will promote free, creative and inductive thinking.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of	Project planning and management Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

The general competencies that the student should have acquired and to which the course is aimed are:

Search, analyze and synthesize data and information and make decisions. Conversion of theory into practice. Promote free, creative and inductive thinking. Autonomous but also teamwork. Acquiring the appropriate theoretical and practical knowledge base to enable further education

(3) SYLLABUS

Industrial Chemistry in Industry 4.0 and Industry 5.0. Natural resources. Raw materials in Chemical Industry. Energy forms. Energy in chemical industry. Mass and energy balances. Basic unit operations and chemical processes in chemical industry. Industry 4.0 and Industry 5.0. Properties of fuels – calorific value. Non-renewable fossil-based fuel materials. Carbon, crude oil, natural gas - origin, reserves, composition, properties, uses. Petrochemical industry, petroleum refinery as the basic unit, oil refinement, basic unit operations in oil refinery, pyrolysis, catalytic processes in refinery. Gas, liquid, solid product from atmospheric distillation column and from vacuum distillation column. Naphtha, diesel, - production, properties, uses, gasoline - properties, composition, properties, production, additives, synthetic gasoline, kerosene, liquified petroleum gas (LPG). Chemical product design. Chemical industry, petrochemicals – basic chemicals, chemical intermediates, consumer products, largest-volume polymer products, elastomers, textile fibers, surfactants and detergents, solvents, asphaltic materials, lubricants, colorants, adhesives, sealings, materials for pharmaceutical applications and medicine, materials for applications in waste treatment. Fossil resources depletion. Petroleum and petrochemicals as pollutants. Sustainability. Circular economy and Bioeconomy. Green chemistry and green chemical technology. Principles of green chemistry and principles of green engineering. Sustainable processes in Industrial Chemistry. Green solvents, green catalysts. Sustainable – green materials. Biorefineries – raw materials, processes, and products. Biomass. Natural polymers, starch-cellulose-hemicellulose-plant oils-algae as raw materials for sustainable materials, biorefinery processes, chemical intermediates, customer products, biofuels – biodiesel, bioethanol, biogas, biomethanol, biodimethylether, bio-ETBE, bio-MTBE, synthetic biofuels, pure plant ois- sustainable biomass derived polymeric materials, biodegradable and biocompatible polymers, 'drop in bioplastics' (substituents of petrochemical plastics) biopolyethyene, biopropylene, bio-PET, novel polymers from renewable resources, chemicals, green solvents, other biomass based materials. Materials form carbon dioxide.

DELIVERY	Face to face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.	
COMMUNICATIONS	Communication via email.		
TECHNOLOGY			
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
	Lectures	39	

(4) TEACHING and LEARNING METHODS - EVALUATION

The manner and methods of	Individual study,	66
teaching are described in detail.	preparation	
Lectures, seminars, laboratory	Written assignment	45
practice, fieldwork, study and		
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.	Course total	
	(25 hours of workload	150
The student's study hours for	per credit unit)	
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE	Students are evaluated (i	n Greek or in English) by
EVALUATION	presenting to the tea	aching committee and
Description of the evaluation	individual public audience	e of a project and by final
procedure	written examination. The	exams include questions
	and problems (multiple	choice, short response,
Language of evaluation,	problem solving)	
methods of evaluation,		
summative or conclusive,		
multiple choice questionnaires,		
short-answer questions, open-		
ended questions, problem		
solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation,		
other		
Specifically-defined evaluation		
criteria are given and if and		
where they are accessible to	1	

-Suggested Literature :

Notes/Presentations of the Instructor.

Sustainable Industrial Chemistry, Fabrizio Cavani, Gabriele Centi, Siglinda Perathoner, Ferruccio Trifiró, Wiley-VCH Verlag GmbH & Co. KGaA, 2009, Print ISBN:9783527315529, Online ISBN:9783527629114, DOI:10.1002/9783527629114.

-Related scientific journals:

ACS Sustainable Chemistry and Engineering Industrial and Engineering Chemistry Research Green Chemical Engineering Bioresource Technology Green Chemistry Biomass Fuel Processing Technology ACS Energy and Fuels Polymer

SCHOOL	Natural Sciences				
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Graduate				
COURSE CODE	IIA05		SEMESTER	1 st	
COURSE TITLE	HISTORY OF CHEMISTRY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING		CREDITS
credits are awarded for the wh	hole of the c	ourse, give	HOURS		
the weekly teaching hours of	and the tota	l credits			
	Lectures 3 6		6		
dd rows if necessary. The organisation of teaching					
and the teaching methods used	ethods used are described in detail				
at (d).					· • 1 • • • • 1
COURSE TYPE	Scientific area, special background, specialised				
general background,	general knowledge				
special background,					
specialised general					
	None				
PREREQUISITE COURSES.	None				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

Guidelines for writing Learning Outcomes
After successfully completing the course, descriptive marker 7 of the European Qualifications Framework, students should be know the milestones in History of Science and also in History of Chemistry and should be able to understand the importance of them for the progress of Science and Chemistry. In specific the students will gain knowledge of the main issues of History of Science and Historiographic Strategies, in History of Chemistry in the 17 th Century, the Phlogiston Theory, the Chemical Revolution (Lavoisier), of the strategy of Lavoisier and the strategy of Priestly, the Foundation of chemical element, and the chemical Nomeclature.
Knowledge
Deepening the basic concepts of History of Science and History of Chemistry.
Skills
Advanced problem-solving skills through careful analysis of the provided data. Abilities
Ability to work independently and to interact with other students on the subject.
Ability to search for data, data analysis, using new technologies, to respect the
environment.
Their survey and bibliographic work will promote free, creative and inductive thinking.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

The general competencies that the student should have acquired and to which the course is aimed are:

Search, analyze and synthesize data and information and make decisions.

Conversion of theory into practice.

Promote free, creative and inductive thinking.

Autonomous but also teamwork.

Acquiring the appropriate theoretical and practical knowledge base to enable further education

(3) SYLLABUS

HISTORY OF SCIENCE. HISTORIOGRAFICAL STRATEGIES, HISTORY OF IDEAS OR HISTORY OF CONCEPTS; HISTORY OF CHEMISTRY IN 17th CENTURY: MECHANICAL CHEMISTRY, BOYLE, LEMERY. THE NEWTONIAN CHEMISTRY. TABLES OF CHEMICAL AFFINITY-GEOFFROY 1700-1750. PHLOGISTON THEORY. CHEMISTRY OF GASES. THE ANALYTICAL IDEAL. THEORY OF SALTS. HOMBERG, RUELLE, BOERHAAVE, HALES, MACQUER 1750-1800. BLACK, BERGMAN, CAVENDISH, KIRWAN, PRISTLEY, BERTHOLLET, FOURCROY THE EMERGENCE OF CHEMICAL QUESTIONS. THE END OF PHLOGISTON THEORY

THE EMERGENCE OF CHEMICAL QUESTIONS. THE END OF PHLOGISTON THEORY CHEMICAL REVOLUTION (LAVOISIER).

PHILOSOPHICAL ASSUMPTIONS IN LAVOISIER'S WORK. DIFFERENCES IN STRATEGIES BETWEEN LAVOISIER AND PRIESTLEY

THE FOUNDATION OF CHEMICAL ELEMENT. ANALYSIS OF 'TRAITE ELEMENTAIRE'. CHEMICAL NOMENCLATURE. THE FOUNDATION OF CHEMICAL NOMENCLATURE

	•		
DELIVERY	Face to face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.	
COMMUNICATIONS	Communication via email		
TECHNOLOGY			
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	39	
teaching are described in detail.	Individual study,	66	
Lectures, seminars, laboratory	preparation		
practice, fieldwork, study and	Written assignment	45	
analysis of bibliography,			
tutorials, placements, clinical			
practice, art workshop,			
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
	Course total		
The student's study hours for	(25 hours of workload	150	
each learning activity are given	per credit unit)		
as well as the hours of hon-			
arrected study according to the			
	Studente ere evelueted (:	n Croak) by procenting to	
	students are evaluated (I	n Greek) by presenting to	
EVALUATION	audioneo of a project and by final written		
	addience of a project	and by final written	

(4) TEACHING and LEARNING METHODS - EVALUATION

Description of the evaluation procedure	examination. The exams include questions and problems (multiple choice, short response)
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

-Suggested Literature :

-Related scientific journals:

SCHOOL	NATURAL SCIENCES				
DEPARTMENT	CHEMISTRY				
STUDY LEVEL	GRADUATE				
COURSE CODE	IIA06		SEMESTER	1	
COURSE NAME	LABORATORY OF SYNTHESIS AND CHARACTERIZATION OF MATERIALS				
TEACHING ACTIVITIES if credits are awarded in separate parts of the course eg Lectures, laboratory practicals, etc. If credits are awarded the same for the entire course, they should indicate the hours per week and the total of credits		WEEKLY LECTURE HOURS		CREDITS	
			6		12
	Colontifico	ree / Develor	النام مارزالم		
	Scientific a	rea / Develop	ing skills		
special background					
special succession,					
general knowledge.					
developing skills					
PREREQUISITE COURSES:	There are no prerequisites. However, the				
	knowledge	of basic prin	ciples of inor	gan	ic
	chemistry with emphasis on coordination				
	compounds (complexes) is desirable.				
LANGUAGE TEACHING and	Greek				
EXAMINATION:					
THE COURSE IS OFFERED TO	YES				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				

(2) LEARNING OUTCOMES

Learning outcomes

The learning outcomes of the course the specific knowledge, skills and abilities appropriate level that will equip students after successful completion of the course are described

Refer to Appendix A

• Description of the Level of Learning Outcomes for each course according to the Qualifications Framework of the European Higher Education Area

• Indicators Descriptors Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B.

• Summary writing Guide of Learning Outcomes

• The aim of the course is to teach and consolidate principles of Materials Chemistry through appropriate laboratory exercises and to train students in synthesis and characterization techniques of inorganic compounds

• After successful completion of the course students should be able to:

1. To recognize the contribution of Materials Chemistry to the development of chemistry and other related branches of science.

2. To be able to synthesize materials using appropriate synthetic methods.

3. Be able to isolate materials in pure form using appropriate purification methods.

4. Interpret infrared and visible-UV spectroscopic, fluorescence and X-ray diffraction data of inorganic and organic materials, etc.

9. To be able to estimate and evaluate biological, biochemical, mechanical, catalytic properties of materials and their technological importance.

Knowledge

Knowledge and understanding of basic concepts, principles and theories related to the synthesis and physicochemical characterization of coordination compounds.

Skills

Skills in the synthesis and purification of materials, use of UV-Vis, IR spectrometers, fluorimeters and single crystal-powder X-ray diffractometers.

Complex problem solving skills through careful analysis of the data provided.

Capacities

Ability to apply the knowledge provided in troubleshooting (theoretical and synthetic) relating to Materials Chemistry.

Ability to prepare materials in pure form.

Ability to use spectrometers.

Ability to interpret spectroscopic data.

Ability not only to work independently but also to interact with other students on the course topics.

General Skills

Taking into account the general competences to be acquired by the graduate (as listed in the DS and listed below) what / which of these skills the course is aimed ?

Search, analysis and synthesis of data	Design and project management
and information, the use and the	Respect for diversity and multiculturalism
necessary technologies	Respect for the natural environment
Adapting to new situations	Demonstrate social, professional and moral
Decision making	responsibility and sensitivity to gender
Autonomous work	issues
Teamwork	Criticism and self-criticism
Working in an international	Promotion of free, creative and inductive
environment	thinking
Work in a multidisciplinary	
environment	Other
Generate new research ideas	

The general skills that should be acquired by the student and in which the course aims are:

Search, analysis and synthesis of data and information and making decisions. Turning theory into practice.

Promotion of free, creative and inductive thinking.

Independent and teamwork.

Acquisition of the appropriate theoretical and practical knowledge base to enable the further training both in theory (in more specific subjects of Materials Chemistry) and in laboratory.

(3) COURSE SYLLABUS

Instructor Professor M. Siskos (4X6 hours) Synthesis of organic materials and their spectroscopic characterization and study of fluorescence properties.

Instructor Assoc. Prof E Manos (5x6 hours) Synthesis and characterization of metal organic frameworks

Instructor Professor A Tsipis (4X6 hours) Synthesis and characterization of inorganic materials-LED.

(4) TEACHING and LEARNING METHODS - EVALUATION

LECTURE DELIVERY METHOD	Face to Face	
Face to Face, distance learning		
к.λπ.		
USE OF INFORMATION AND	Electronic communicatior	n with students.
COMMUNICATION	Post-exercise additional n	otes etc. on the
TECHNOLOGIES	websites of teachers	
Using ICT in Teaching ,		
Laboratory Training and in		
Communication with the		
students		
ORGANIZING THE TEACHING	ΑΓΤΙΜΙΤΥ	SEMESTER WORK
Describe in detail the methods	ACTIVITY	LOAD
of teaching.	Lectures	16
Lectures, Seminars, Laboratory	Laboratory exercise	62
Exercise, Field Exercise, Study	Tutorial	50
and literature analysis, Tutorial,	Writing work	60
Practice (Placement), Clinical	Individual study and	60
Practice, Art Workshop,	preparation	
Interactive teaching, Study	Oral presentations of	52
Visits, Study (project), Writing	assignments	
job / work, Artistic creation etc.		
Enter the hours of study for		
each student learning activity	TOTAL	
and hours of Non-guided study	(25 hours of work load	300
in accordance with the	per credit)	
principles of ECTS		

STUDENT EVALUATION	
Description of the evaluation process Assessment Language, Methods of assessment Formative or Concluding, Test Multiple Choice, Questions Short Answer, Development Questions Essays, Problem	The students are graded based on their assignments-oral presentation of assignments in the context of the laboratory exercises, oral and / or a short written examination during the laboratory course and through written examinations at the end of the semester. Their assignments include the development of basic theory-purpose of the exercises, the experimental procedure and analysis-interpretation of results. The final exam include:
Solving, Written Work, Report / Report, Oral Examination, Public Presentation, Laboratory	Short Answer Questions, crisis, development, and problem solving
Work, Clinical Examination Patient Artistic Interpretation Other / other	All these criteria are explained to students at the start of the course.
Indicate clearly defined evaluation criteria and whether and which are accessible to students.	

(5) SUGGESTED LITERATURE

-SUGGESTED LITERATURE :

EYDOXOS

INORGANIC CHEMISTRY- ISSUE B EYDOXOS NUMBER: 102070044 AUTHORS: WELLER MARK, ROURKE JONATHAN, OVERTON TINA, ARMSTRONG FRASER

OTHERS

1. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edition, Parts A and B", Willey-Interscience Pubs, 1997.

2. A. R. West, "Basic Solid State Chemistry", Wiley, 2001

3. A.B.P. Lever, "Inorganic electronic spectroscopy (second edition), Elsevier, 1984 4. Zvi Szafran, Ronald M. Pike, Mono M. Singh, "Microscale Inorganic Chemistry",

J. Wiley (1991).

5. B. Valeur, Prof. M. N. Berberan Santos(auth.)-«Molecular Fluorescence: Principles and Applications», (Second Edition), Wiley, 2012

6. Joseph R. Lakowicz, «Principles of Fluorescence Spectroscopy» 3rd Edition, Springer, (2006)

-Related Scientific Journals: Inorganic Chemistry Chemistry of Materials Journal of Materials Chemistry A Advanced Materials

SCHOOL	NATURAL SCIENCES			
ACADEMIC UNIT	CHEMISTRY			
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	IIA07		SEMESTER	st
COURSE TITLE	COMPUTATIONAL CHEMISTRY & MOLECULAR SIMULATION LAB (I)			
INDEPENDENT TEACHI	NG ACTIVI	TIES		
if credits are awarded for sepa	lits are awarded for separate components of the WEEKLY			
course, e.g. lectures, laborato	, e.g. lectures, laboratory exercises, etc. If the			CREDITS
credits are awarded for the wh	nole of the	course, give	HOURS	
the weekly teaching hours o	and the tot	al credits		
	Exerc	ises-Lectures	10	12
Add rows if necessary. The orga	nisation of	teaching		
and the teaching methods used are described in detail at (d).				
COURSE TYPE	Specialised general knowledge			
general background,				
special background,				
specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	Essential	attendance an	d participation ir	the lab course
	requires k	nowledge of b	asic mathematio	S,
	thermost	atistics and qua	antum mechanic	s coursework
	taught in the first, second, third and fourth years of			
	undergraduate studies (Calculus I & II, Physical Chemistry			
	I, II & III, Applications of Quantum Chemistry) of the			
	Chemistry Department.			
	Greek			
	Vee /tre E :			
IS THE COURSE OFFERED TO	Yes (in English)			
	h++n.//		cooc/potoc/locture	rol/20notos htm
COURSE WEBSITE (URL)	nttp://use	ers.uoi.gr/meii	ssas/notes/iectu	re%zunotes.ntm

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The lab is included in the compulsory optional courses of the thematic unit of Chemistry, Physical Chemistry and Materials Technology-Epistemology, aiming at training of the student with modern methods of Computational Chemistry for the calculation of physical and chemical properties of various atomic and molecular systems.

The subject matter of the lab aims at the specialization of students in the following subjects:

-familiarization with methods for i) integral evaluation, ii) solution of self-consistent equations, iii) evaluation of the energy gradient, iv) integral transformation,

v) exploitation of molecular symmetry and vi) for generation of three-dimensional molecular orbital and total electron density plots,

-selection of a model (Hartree-Fock methods, atomic basis sets of Gaussian functions, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}),

-molecular geometry, input: the Z-matrix, output,

-equilibrium geometries, vibrational frequencies and thermodynamic properties, molecular conformations and barriers to rotation and inversion, thermochemical stabilities of molecules, electric dipole moments and molecular charge distributions.

After successful completion of the lab, students should be able to:

-successfully evaluate computational chemistry integrals, to set up and solve selfconsistent equations, to understand and evaluate the energy gradient vector, to easily manipulate integral transformations, to make a thorough use of the existing molecular symmetry and to generate, via available software, three-dimensional molecular orbital and total electron density plots,

-select between available levels of theory (Hartree-Fock methods, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}) and atomic basis sets of Gaussian functions,

-set up the molecular geometry and prepare the input information with the corresponding Z-matrix and all appropriate keywords, and later to read and realize all output info (graphs and plots included),

-calculate equilibrium and stationary geometries (minima, transition states, saddle points), vibrational frequencies (which confirm the geometry type) and thermodynamic properties, molecular conformations and barriers to rotation and inversion,

thermochemical stabilities of molecules, electric dipole moments and molecular charge distributions.

Knowledge:

-to acquire knowledge i) for the evaluation of computational chemistry integrals, ii) for the set up and solvation of self-consistent equations, iii) for a thorough understanding and evaluation of the energy gradient vector, iv) for a comfortable manipulation of integral transformations, v) for a thorough use of the existing molecular symmetry and vi) for the generation, via available software, of three-dimensional molecular orbital and

total electron density plots,

-basic knowledge of selecting between available levels of theory (Hartree-Fock methods, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}) and atomic basis sets of Gaussian functions, -assimilation of setting up the molecular geometry and preparing the input information with the corresponding Z-matrix and all appropriate keywords, and furthermore reading and realizing all output info (graphs and plots included),

-complete knowledge of calculating equilibrium and stationary geometries (minima, transition states, saddle points), vibrational frequencies (which confirm the geometry type) and thermodynamic properties, molecular conformations and barriers to rotation and inversion, thermochemical stabilities of molecules, electric dipole moments and molecular charge distributions.

Skills:

-skills in i) evaluating computational chemistry integrals, ii) setting up and solving selfconsistent equations, iii) understanding and evaluating the energy gradient vector, iv) manipulating integral transformations, v) taking advantage of the existing molecular symmetry and vi) generating, via available software, three-dimensional molecular orbital and total electron density plots,

-skills in selecting between available levels of theory (Hartree-Fock methods, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}) and atomic basis sets of Gaussian functions,

-skills in setting up the molecular geometry and preparing the input information with the corresponding Z-matrix and all appropriate keywords, and furthermore reading and realizing all output info (graphs and plots included),

-skills in calculating equilibrium and stationary geometries (minima, transition states, saddle points), vibrational frequencies (which confirm the geometry type) and thermodynamic properties, molecular conformations and barriers to rotation and inversion, thermochemical stabilities of molecules, electric dipole moments and molecular charge distributions.

Abilities:

-ability to successfully evaluate computational chemistry integrals, to set up and solve self-consistent equations, to understand and evaluate the energy gradient vector, to easily manipulate integral transformations, to make a thorough use of the existing molecular symmetry and to generate, via available software, three-dimensional molecular orbital and total electron density plots,

-ability to select between available levels of theory (Hartree-Fock methods, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}) and atomic basis sets of Gaussian functions,

-ability to set up the molecular geometry and prepare the input information with the corresponding Z-matrix and all appropriate keywords, and later to read and realize all output info (graphs and plots included) and

-ability to calculate equilibrium and stationary geometries (minima, transition states, saddle points), vibrational frequencies (which confirm the geometry type) and thermodynamic properties, molecular conformations and barriers to rotation and inversion, thermochemical stabilities of molecules, electric dipole moments and

molecular charge distributions.

General Competences

Taking into consideration the general co acquire (as these appear in the Diploma the following does the course aim?	mpetences that the degree-holder must Supplement and appear below), at which of
Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

The course aims at acquiring high level knowledge of computational chemistry and experience in employing various related software packages, necessary for calculating physical and chemical properties of various atomic and molecular species. In particular, the areas of focus and understanding of the above concepts are aimed at developing the following abilities:

-evaluate computational chemistry integrals, set up and solve self-consistent equations, understand and evaluate the energy gradient vector, easily manipulate integral transformations, make a thorough use of the existing molecular symmetry and generate, via available software, three-dimensional molecular orbital and total electron density plots,

-apply critical thinking in selecting between available levels of theory (Hartree-Fock methods, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}) and atomic basis sets of Gaussian functions, -set up the molecular geometry and prepare the input information with the corresponding Z-matrix and all appropriate keywords, and later read and realize all output info (graphs and plots included) and

-calculate equilibrium and stationary geometries (minima, transition states, saddle points), vibrational frequencies (which confirm the geometry type) and thermodynamic properties, molecular conformations and barriers to rotation and

inversion, thermochemical stabilities of molecules, electric dipole moments and molecular charge distributions and

-manage an appraisal number of atomic and molecular problems in order to gain self-reliance and self-confidence about the "computational chemistry" way of acting.

(3) SYLLABUS

-Advanced methods for i) integral evaluation, ii) solution of self-consistent equations, iii) evaluation of the energy gradient, iv) integral transformation, v) exploitation of molecular symmetry and vi) for generation of three-dimensional molecular orbital and total electron density plots,

-Level of theory selection (Hartree-Fock methods, atomic basis sets of Gaussian
functions, electron correlation methods {limited configuration interaction, Möller-Plesset perturbation treatments, etc}),

-Definition of molecular geometry, input: the Z-matrix, output,

-Calculation of equilibrium geometries and stationary points, vibrational frequencies and thermodynamic properties, molecular conformations and barriers to rotation and inversion, thermochemical stabilities of molecules, electric dipole moments and molecular charge distributions and

-Managing an appraisal number of related problems in order to gain self-reliance and self-confidence about the "computational chemistry" way of thinking.

DELIVERY	In the computational chemistry lab, encouraging			
Face-to-face, Distance learning,	students to participate in theoretical			
etc.	experiments/exercises.			
USE OF INFORMATION AND	Support of the learning p	rocess through the e-		
COMMUNICATIONS	cource electronic platforr	n, a variety of short		
TECHNOLOGY	explanatory video project	ions and the use of		
Use of ICT in teaching,	specialized web pages.			
laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	20		
teaching are described in detail.	Laboratory practice	200		
Lectures, seminars, laboratory	Tutorial	45		
practice, fieldwork, study and	Writing work	20		
analysis of bibliography,	Individual study and	15		
tutorials, placements, clinical	preparation			
practice, art workshop,				
interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
	TOTAL	300		
The student's study hours for				
each learning activity are given				
as well as the nours of non-				
airected study according to the				
principles of the ECIS	The completion of thirtee	n (12) computational		
	aversises on preselected	topics upon consultation		
Description of the evaluation	with the instructor after	the completion of the		
procedure	laboratory exercises			
procedure				
Language of evaluation				
methods of evaluation				
summative or conclusive				
multiple choice questionnaires				
short-answer questions, open-				

ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

- Suggested bibliography:

- Related academic journals:

-Suites of programs: Gaussian09, GAMESS-US και NWChem, "Ab Initio Molecular Orbital Theory", W. J. Hehre, L. Radom, P. v.R. Schleyer and J. A. Pople, J. Wiley & Sons, Inc., 1985. Related scientific journals: Journal of Chemical Physics, Journal of Physical Chemistry A, B, C, Chemical Physics, Chemical Physics Letters, Journal of the American Chemical Society, Nature Chemistry, Computational and Theoretical Chemistry, Physical Chemistry Chemical Physics, ChemPhysChem.

(1) GENERAL

SCHOOL	Natural Sci	Natural Sciences			
ACADEMIC UNIT	Department Of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIB01		SEMESTER	2 nd	ł
COURSE TITLE	FUNCTIONAL AND CATALYTIC MOLECULAR MATERIALS				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	3	CREDITS
credits are awarded for the wh	whole of the course, give HOURS				
the weekly teaching hours o	and the tota	l credits			
	(CLASSROOM	3		6
Add rows if necessary. The organisation of teaching		eaching			
and the teaching methods used are described in detail					
at (d).					
COURSE TYPE	Scientific a	irea, special b	ackground, s	pec	alised
general background,	general kn	owledge			
special background,					
specialisea general					
PREREQUISITE COURSES:	NONE				
	CDEEK				
	GKEEK				
	VEC				
FRASMUS STUDENTS	163				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for

Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

After successfully completing the course, descriptive marker 6 of the European Qualifications Framework, students should be able to:

• Understand the basic categories of functional materials.

• Understand the technological applications of these materials

More specifically:

1. Familiarize themselves with the advanced synthetic techniques for the preparation of inorganic and inorganic-organic hybrid materials.

2. Familiarize themselves with the advanced characterization methods of molecular materials

3. Familiarize themselves with studies of materials properties such as catalytic, luminescence etc.

4. Familiarize themselves with the applications of molecular materials in the field of energy, such as photovoltaics.

5. Familiarize themselves with the correlation of structure-property of materials.

6. Be able to predict possible properties of new compounds

Knowledge

Deepening the basic concepts of synthesis of advanced materials and their technological applications.

Skills

Advanced problem solving skills through careful analysis of the provided data.

Abilities

Ability to apply the provided knowledge to the problems (theoretical and synthetic) related to molecular materials chemistry.

Ability to propose synthetic pathways for the synthesis of molecular materials with specific properties.

Ability to work independently and to interact with other students on the subject.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	

Others...

Production of new research ideas

The general competencies that the student should have acquired and to which the course is aimed are:

Search, analyze and synthesize data and information and make decisions. Conversion of theory into practice.

Promote free, creative and inductive thinking.

Autonomous but also teamwork.

Acquiring the appropriate theoretical and practical knowledge base to enable further education both at a theoretical level (in more specific subjects of synthetic chemistry) and in a laboratory.

(3) SYLLABUS

environment

- 1. Metal Organic Frameworks. Structures and topological analysis.
- 2. Luminescence properties of Molecular Materials
- 3. Luminescence sensors
- 4. Catalytic Molecular Materials
- 5. Correlation of structure and catalytic activity of molecular materials.
- 6. Molecular materials for photovoltaic applications
- 7. Lanthanide molecular materials.

DELIVERY	Face to face			
Face-to-face, Distance learning,				
etc.				
USE OF INFORMATION AND	e-mail communication with the students, Power			
COMMUNICATIONS	point presentations.			
TECHNOLOGY				
Use of ICT in teaching,				
laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	39		
teaching are described in detail.	Individual study,	66		
Lectures, seminars, laboratory	preparation			
practice, fieldwork, study and	Writing a paper t o	45		
analysis of bibliography,	present			
tutorials, placements, clinical				
practice, art workshop,				
interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
The studentle study house for	Course total			
The student's study nours for	(25 hours of workload	150		
each learning activity are given	per credit unit)			
directed study according to the				
principles of the ECTS				
STODENT PERFORMANCE	Students are evaluated (i	n Greek) by presenting to		
Description of the evaluation	the teaching committee a	and individual public		
procedure	audience of a project and	hy final written		
procedure	examination. The exams i	nclude questions and		
Language of evaluation.	problems (multiple choice	e, short response.		
methods of evaluation.	problem solving)	,		
summative or conclusive,	,			
multiple choice questionnaires,				
short-answer questions, open-				
ended questions, problem				
solving, written work,				
essay/report, oral examination,				
public presentation, laboratory				
work, clinical examination of				
patient, art interpretation,				
other				
Specifically-defined evaluation				
criteria are given, and if and				

where	they are	accessible	to
studen	ts.		

- Suggested bibliography (first in Greek):

1. Solid state chemistry and its applications, Anthony R. West, Wiley, 2013.

2. Molecular Materials, Inorganic Materials Series, D. W. Bruce, D. O'Hare and R. I. Walton (Editors), Wiley, 2010.

3. Materials Chemistry, Bradley D. Fahlman, Springer, 2007.

4. Metal-Organic Frameworks for Photonics Applications, B. Chen and G. Qian (Editors), Springer, 2014.

5. Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, Martin Schroder, Springer, 2010.

6. Organic-Inorganic Halide Perovskite Photovoltaics, From Fundamentals to Device Architectures, N.-G. **Park**, M. **Grätzel**, T. **Miyasaka** (Editors), Springer, 2016.

(1) GENERAL

SCHOOL	Natural Sci	iences	
ACADEMIC UNIT	Chemistry		
LEVEL OF STUDIES	Postgraduate		
COURSE CODE	IIB02	SEMESTER	В

COURSE TITLE	SPECTROSCOPIC AND PHYSICOCHEMICAL CHARACTERIZATION METHODS			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
		3	6	
Add rows if necessary. The organ and the teaching methods used at (d).				
COURSE TYPE	Special background, spe	cialized general	knowledge	
general background,				
special background,				
specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	NONE			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

Guidelines for writing Learning Outcomes

After the successful completion of the course, the postgraduates. students should be able to:

To understand basic principles of Spectroscopy.

• To understand the basic principles of Physicochemical methods of characterization of materials in all phases of matter

More specifically:

1) Development of basic principles and equations for microwave, photoelectron (XPS) and Vibrational Spectroscopy.

Development of basic principles and equations for Electron Microscopy (transmission and scanning, TEM/SEM) and Atomic Force Microscopy (AFM) 2) Familiarity with special techniques, Steady-state and Time-resolved Spectroscopy, its Applications? Spectroscopy in the sciences of Chemistry, Biochemistry, Biology and Medicine, Industrial applications.

3) Familiarity with crystal structure resolution from single crystal X-ray diffraction and the small angle XRD technique in the characterization of sheet-like materials and MCM-type materials.

4) Familiarity with Thermal Analysis techniques, Dynamic Mechanical Analysis, Kinetic study with Thermal Analysis techniques.

Knowledge

Deepening the basic concepts of synthesis in variable synthetic conditions and distinct knowledge on principles and theories related to the synthesis of materials. Skills

Advanced problem-solving skills through careful analysis of the provided data. Abilities

Ability to apply the provided knowledge to solving problems (theoretical and synthetic) related to Spectroscopy and characterization methods, in general.

Ability to both work independently and interact with other students on course topics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

The general competencies that the student should have acquired and to which the course is aimed are:

Search, analyze and synthesize data and information and make decisions.

Conversion of theory into practice.

Promote free, creative and inductive thinking.

Autonomous but also teamwork capability.

Acquiring the appropriate theoretical and practical knowledge base to enable further education both at a theoretical level (in more specific subjects of Materials Chemistry) and in a laboratory.

Pay respect to environment by employing green precursor substances and store any reaction wastes

Capability of survey, analysis of data and details taken form international literature as well as utilization of appropriate tools related to the presentation of research results.

(3) SYLLABUS

Development of Basic Principles and Equations for Microwave Spectroscopy -

Examples of characterization of nano-materials with Raman - Electron microscopy (transmission and scanning, TEM/SEM.

Atomic force microscopy (AFM) .

Introduction to photoelectron spectroscopy (XPS).

Basic theory of Vibrational Spectroscopy, Differences of Raman and IR Spectroscopies, Normal modes of vibration in a crystal, Raman spectra of liquids and amorphous materials, Analysis of normal modes of vibration, Organology and experimental techniques.

Special techniques, Steady-state and Time-resolved Raman Spectroscopy, its Applications? Raman spectroscopy in the sciences of Chemistry, Biochemistry, Biology and Medicine, Industrial applications. Crystal lattices, symmetry of crystalline solids, inverse lattice.

X-ray diffraction from crystalline solids, powder diagrams, structure factors and applications.

Crystal structure solution from single crystal X-ray diffraction.

Time-resolved crystallography and applications to the study of fast reactions in crystalline solids.

Thermal Analysis, Thermogravimetry, Differential Thermal Analysis, Differential Scanning Calorimetry, Thermomechanical Analysis.

Dynamic Mechanical Analysis, Kinetic study with Thermal Analysis techniques. Nitrogen dosimetry

Characteristic adsorption-desorption isotherms, Characterization of hysteresis loops of porous materials, "Standard" isotherm of non-porous materials and t-plots, Pore volume distributions of porous materials.

Small-angle XRD in the characterization of sheet-like and MCM-type materials.

Thermoprogrammable desorption (TPD) technique and determination of surface acidity and basicity in ceramic materials, Thermoprogrammable reduction (TPR) technique and its application to the characterization of simple and mixed oxides.

DELIVERY	Face to face
Face-to-face, Distance learning,	
etc.	

USE OF INFORMATION AND	- Use of ICT in teaching	
COMMUNICATIONS	- Email communication w	ith students
TECHNOLOGY		
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	39
teaching are described in detail.	Essay writing	45
Lectures, seminars, laboratory	Non-directed study	66
practice, fieldwork, study and		
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.	Total	150
The student's study hours for		
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE		
EVALUATION	Students are evaluated	(in Greek) in a combined
Description of the evaluation	and individual public aud	lience of a project (essay)
procedure	as well as by final writter	n examination. The latter
	exam includes questions	and problems (multiple
Language of evaluation,	choice, short response, p	problem solving).
methods of evaluation,	the essay have equal in	nand the presentation of
summative or conclusive,	(50% : 50%)	inpact to the initial grade
multiple choice questionnaires,	()	
short-answer questions, open-		
ended questions, problem		
solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation,		
other		
Specifically-defined evaluation		
criteria are given, and if and		
where they are accessible to		
students.		

Μοριακές Κβαντικές Καταστάσεις και Στατιστική Θερμοδυναμική, 2018 (1η έκδοση), Εκδόσεις Συμμετρία, Α. Μυλωνά-Κοσμά, Α. Γ. Καλαμπούνιας, ISBN: 978-960-266-473-5

RELATED SCIENTIFIC JOURNALS JOURNAL OF CHEMICAL PHYSICS JOURNAL OF PHYSICAL CHEMISTRY PHYSICAL CHEMISTRY CHEMICAL PHYSICS

(1) GENERAL

SCHOOL	Natural Sciences				
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIB03		SEMESTER	2 nd	ł
COURSE TITLE	CHEMISTRY, PHYSICAL CHEMISTRY AND TECHNOLOGY OF POLYMERS				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for separ	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING		CREDITS
credits are awarded for the wh	vhole of the course, give HOURS				
the weekly teaching hours o	and the tota	l credits			
		Lectures	3		6
Add rows if necessary. The organisation of teaching					
and the teaching methods used are described in detail					
at (d).					
COURSE TYPE	Special bac	cialized gene	eral	knowledge	
general background,					
special background,					
specialised general					
knowledge, skills development	•				
PREREQUISITE COURSES:	None				
LANGUAGE OF INSTRUCTION	Greek or English				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(1) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After successfully completing the course, descriptive marker 6 of the European Qualifications Framework, students should:

- Have knowledge of polymerization reactions and molecular characterization of polymers.
- Be able to understand basic models for description of polymeric chains.
- Have basic knowledge of thermal and mechanical properties, processes for industrial production of polymers, rheology and processing of polymers, additives, polymer matrix composites.

Knowledge

Basic knowledge of materials science, deepening the concepts of polymerization reactions, understanding of polymer theory, basic knowledge of thermal and mechanical properties of polymers, basic knowledge of industrial processes for polymer production and applications of polymers.

Skills

Advanced problem solving skills through careful analysis of the provided data. **Abilities**

Ability to apply the provided knowledge to the design of polymeric materials design. Ability to work independently and to interact with other students on the subject. They will learn how to search in literature and analyze data using new technologies. They will also be taught to respect the environment. Their survey and bibliographic work will promote free, creative and inductive thinking.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

The general competencies that the student should have acquired and to which the course is aimed are:

Search, analyze and synthesize data and information and make decisions.

Conversion of theory into practice.

Promote free, creative and inductive thinking.

Autonomous but also teamwork.

Acquiring the appropriate theoretical and practical knowledge base to enable

further education

(2) SYLLABUS

Polymer nomeclature. Polymer classification. Isomerism-stereochemistry. Molecular weights. Step growth reactions – kinetics of step growth polymerization. Main condensation polymers. Chain growth polymerization, free radical, anionic, cationic, coordination polymerization. Kinetics of chain growth polymerization. Main examples of chain growth polymers. Industrial polymerization processes – bulk polymerization, solution polymerization emulsion polymerization, suspension polymerization, specific polymerization processes. Thermal and mechanical properties of polymers. Polymer rheology. Additives in polymers. Polymer processing. Copolymers. Polymer blends. Polymer networks. Polymer classes by application. Conformational properties of polymers in dilute solutions: Kuhn length, excluded volume effect, the random walk model of the flexible chain, Two parameters theory, renormalization group theory scaling theory, Calculation of radius of gyration., Effects of polymer architecture on the conformational properties. Viscosity. Flory theory for polymer melts and blends. Microphase separation in diblock copolymer melts.

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.
COMMUNICATIONS	Communication via email	
TECHNOLOGY		
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	39
teaching are described in detail.	Individual study,	45
Lectures, seminars, laboratory	preparation	
practice, fieldwork, study and	Written assignment	66
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
	Course total	
The student's study hours for	(25 hours of workload	150
each learning activity are given	per credit unit)	
as well as the hours of non-		
airected study according to the		
principles of the ECIS		

STUDENT PERFORMANCE	
EVALUATION	
Description of the evaluation	
procedure	Written examination (50%) in Greek, with multiple
	choice questionnaires and short-answer
Language of evaluation,	questions.
methods of evaluation,	Written work with public presentation (50%).
summative or conclusive,	
multiple choice questionnaires,	
short-answer questions, open-	
ended questions, problem	
solving, written work,	
essay/report, oral examination,	
public presentation, laboratory	
work, clinical examination of	
patient, art interpretation,	
other	
Specifically-defined evaluation	
criteria are given, and if and	
where they are accessible to	
students.	

Suggested literature:

• Notes/Presentations of the instructors

Related scientific journals:

- Progress in Polymer Science
- Macromolecules
- Biomacromolecules
- Polymer Chemistry
- Polymer
- European Polymer Journal
- Macromolecular Materials and Engineering
- Macromolecular Bioscience
- Polymers

(1) GENERAL

SCHOOL	Natural Sci	Natural Sciences			
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIB04		SEMESTER	2 nd	d
COURSE TITLE	EPISTEMOLOGY OF CHEMISTRY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY TEACHING HOURS		CREDITS
course, e.g. lectures, laborato	ry exercises,	etc. If the			
credits are awarded for the wh	hole of the c	ourse, give			
the weekly teaching hours of	and the tota	l credits			
		3		6	
Add rows if necessary. The organisation of teaching					
and the teaching methods used are described in detail					
	Colontifico				
	scientific area, special background, specialised			lansed	
general background,	general knowledge				
special background,					
knowledge skills development					
	None				
FREREQUISITE COURSES.	None				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	No				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After successfully completing the course, descriptive marker 7 of the European Qualifications Framework, students should know the milestones in Philosophy of Science, in the emergence of the Epistemology of Chemistry and the reduction of Chemistry, and they should be able to understand the importance of them for the progress of Science and Chemistry.

Knowledge

Deepening the basic concepts of Philosophy of Science and Epistemology of Chemistry.

Skills

Advanced problem-solving skills through careful analysis of the provided data. **Abilities**

Ability to work independently and to interact with other students on the subject. Ability to search for data, data analysis, using new technologies, to respect the environment.

Their survey and bibliographic work will promote free, creative and inductive thinking.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

The general competencies that the student should have acquired and to which the course is aimed are:

Search, analyze and synthesize data and information and make decisions.

Conversion of theory into practice.

Promote free, creative, and inductive thinking.

Autonomous but also teamwork.

Acquiring the appropriate theoretical and practical knowledge base to enable further education

(3) SYLLABUS

FILOSOPHY OF SCIENCE (LOGICAL POSITIVISM, FALSIFIABILITY, THEORY OF PARADIGM (KUHN), THEORY OF EPISTEMOLOGICAL OBSTACLE, SOCIOLOGY OF KNOWLEDGE

- 2. THE EMERGENCE OF EPISTEMOLOGY OF CHEMISTRY (INTERDISCOURSE RELATIONS: REDUCTION, SUPERVENIENCE AND EMERGENCE, CAUSAL THEORY OF REFERENCE, THE COGNITIVE TOOLS OF CHEMISTRY, FROM PERSONAL TO CONSENSUS PRACTICE (1700-1800), LAWS AND THEORIES IN CHEMISTRY
- 3. REDUCTION OF CHEMISTRY (CHEMICAL BOND, QUANTUM MECHANICS AND CHEMICAL BOND, EPISTEMOLOGICAL STRATECIES: RATIONALITY, EMPIRICISM-PRAGMATISM, QUANTUM MECHANICS AND PERIODIC TABLE

	Face to face			
Face-to-face, Distance learning,				
etc.				
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.		
COMMUNICATIONS	Communication via email			
TECHNOLOGY				
Use of ICT in teaching,				
laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	39		
teaching are described in detail.	Individual study,	66		
Lectures, seminars, laboratory	preparation			
practice, fieldwork, study and	Written assignment	45		
analysis of bibliography,				
tutorials, placements, clinical				
practice, art workshop,				
interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
	Course total			
The student's study hours for	(25 hours of workload	150		
each learning activity are given	per credit unit)			
as well as the hours of non-				
directed study according to the				
principles of the ECTS				
STUDENT PERFORMANCE	Students are evaluated (i	n Greek) by presenting to		
EVALUATION	the teaching committee	e and individual public		
Description of the evaluation	audience of a project	and by final written		
procedure	examination. The exame	s include questions and		
	problems (multiple choice	e, short response)		
Language of evaluation,				
methods of evaluation,				
summative or conclusive,				
multiple choice questionnaires,				
short-answer questions, open-				
ended questions, problem				
solving, written work,				

essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other
Specifically-defined evaluation criteria are given, and if and where they are accessible to
students.

-Suggested Literature :

-Related scientific journals:

(1) GENERAL

SCHOOL	Natural Sci	iences			
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIA07 SEMESTER 2nd				d
COURSE TITLE	LABORATORY OF COMPUTATIONAL CHEMISTRY AND SIMULATIONS II				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY TEACHING		CREDITS
course, e.g. lectures, laborato	ry exercises,	etc. If the			
credits are awarded for the wh	hole of the course, give HOURS				
the weekly teaching hours of	and the tota	l credits			
			4		12
dd rows if necessary. The organisation of teaching					
and the teaching methods used	ed are described in detail				
at (d).					
COURSE TYPE	Skills deve	lopment, Spe	cialization		
general background,					
special background,					
specialisea general					
knowledge, skills development	NI -				
PREREQUISITE COURSES:	NO				
	Crook				
	Greek				
	No				
	INU				
	No				
COURSE WEDSITE (UKL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

Students will gain advanced knowledge on Molecular Dynamics simulations. They will become able to understand and to choose the right type of simulation and force field for the description of different chemical systems. They will learn how to search in literature and analyze data. Their survey and bibliographic work will promote free, creative and inductive thinking.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others
Production of new research ideas	
Search, analysis and synthesis of data an	nd information by using the proper
technologies.	
Autonomous work	

Promoting free, creative and inductive thinking

(3) SYLLABUS

The course consists of a project, the topic of which is determined by the teacher. At the present stage it includes simulation of polymer solutions, polymer melts and polyelectrolytes.

Installation of LAMMPS and Open MPI open software on Windows. Installation of VMD and Vim. Introduction to the input file of the simulation. Creation of the initial configuration of the system. Design of the required simulations for the project. Molecular Dynamics trajectories. Post processing and properties calculations. Writing the final report

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of Microsoft Ms Tean	ns software.
COMMUNICATIONS		
TECHNOLOGY		
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload

The manner and methods of	Lectures	20
teaching are described in detail.	Laboratory practice	200
Lectures, seminars, laboratory	Tutorial	45
practice, fieldwork, study and	Writing work	20
analysis of bibliography,	Individual study and	15
tutorials, placements, clinical	preparation	
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
	TOTAL	300
The student's study hours for		
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation		
procedure		
	Oral evaluation during th	e laboratory and
Language of evaluation,	evaluation of the final rep	oort.
methods of evaluation,		
summative or conclusive,		
multiple choice questionnaires,		
short-answer questions, open-		
ended questions, problem		
solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation,		
other		
Specifically-defined evaluation		
criteria are given, and if and		
where they are accessible to		
students.		

- Suggested bibliography:

1. Υπολογιστική Χημεία – Μοριακές Προσομοιώσεις Θεωρίες μέθοδοι και εφαρμογές. Α. Κολοκούρης. Επιστημονικές Εκδόσεις Παρισιάνου 2021.

2. Computer Simulation of liquids. M. P. Allen and D.J. Tildesley. Clarendon Press-Oxford 2nd edition 2017.

3. Understanding Molecular Simulations: From Algorithms to Applications. D Frenkel and B. Smit. Academic Press 2002. - *Related academic journals:*

(1) GENERAL

SCHOOL	NATURAL SCIENCES				
ACADEMIC UNIT	DEPARTMENT OF CHEMISTRY				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIB06		SEMESTER	2n	d
COURSE TITLE	LABORATORY OF CHEMICAL TECHNOLOGY			OGY	
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY TEACHING HOURS		CREDITS
course, e.g. lectures, laborato	ry exercises,	etc. If the			
credits are awarded for the wh	nole of the c	ourse, give			
the weekly teaching hours o	and the tota	l credits			
l	ABORATOR	Y EXERCISES	6		12
Total			78		
Add rows if necessary. The orga	rows if necessary. The organisation of teaching				
and the teaching methods used are described in detail					
at (d).					
COURSE TYPE	Specialized	l knowledge /	skills develo	pm	ent
general background,					
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION	GREEK				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After the successful completion of the course, descriptive level 7 of the European Qualifications Framework for Lifelong Learning, the students will be capable to:

• Understand deeply chemical technology principles and develop skills related to chemical industry, environmental protection technologies, materials science and technology and their applications.

• to use their knowledge and skills in applications and problem-solving, within an interdisciplinary context, relevant to their field of knowledge.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diplome
Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

• Application of knowledge dealing with advanced methods, techniques and technologies for industrial applications, materials characterization and environmental protection.

• Inquiring of theoretical and practical background for performing further education, postgraduate and doctoral studies.

• Utilization of laboratory infrastructures and equipment for the above-mentioned aims

• Search for, analysis and synthesis of data and information, with the use of the necessary technology

• Inquiring the necessary learning skills that allow them to continue their studies in a largely self-reliant or even autonomous manner.

• Possesses specialized problem-solving skills, which are required in research and/or innovation in order to develop new knowledge and processes and integrate knowledge from different fields.

- Theoretical knowledge and bringing-applying theory to practice
- Team work as well as working independently
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for the natural environment

(3) SYLLABUS

Study of the thermal transitions and the crystallization kinetics of polymeric materials under isothermal and dynamic conditions, Physicochemical characterization of dispersion systems and solid pharmacotechnical forms, Preparation and characterization of polymeric materials from renewable resources, Mass and energy balances in the processes of industrial chemistry, Determination of specific surface area and fractality dimension of materials, Determination of apparent activation energy in N₂O catalytic decomposition, Fix-Bed Column Adsorption of pollutants (dyes, etc), Coagulation-Sedimentation (Jar test), z-potential, Photo(catalytic) treatment of wastewaters, Determination of Semiconductors Band-gap, Thermochemical conversion of Biomass (Hydrothermal carbonization and/or pyrolysis), Surface Hydrophilicity/Hydrophobicity of materials (contact angle measurements), Porosimetry of Adsorbents or Catalysts, Scanning Electron Microscopy (SEM) of materials.

DELIVERY Face-to-face, Distance learning, etc.	Face to Face	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of Technologies communications in teaching and communication with	of Information and ing of the theoretical part students.
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Laboratory practice	78

Lectures, seminars, laboratory practice,	Written essay	117	
tutorials, placements, clinical practice, art	study	105	
workshop, interactive teaching, educational			
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-			
the ECTS	Course total	300	
STUDENT PERFORMANCE			
EVALUATION	 Written team (2 or 3 students) essay/project for ever laboratory exercise F Evaluation criteria: (a) Plenitude of essay (30%), (b) 		
Description of the evaluation procedure			
Language of evaluation, methods of			
evaluation, summative or conclusive, multiple choice auestionnaires, short-answer auestions.	quality of experimental resu	ılts (30%), (c) treatment	
open-ended questions, problem solving,	and interpretation of data (40%)	
written work, essay/report, oral examination,			
examination of patient, art interpretation,			
other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
stutents.			

Suggested bibliography (in Greek):
1) Notes/Presentations of professors, Review papers
Related academic journals:
1) Chemical Engineering Journal
2) Industrial and Engineering Chemistry Research
3) Journal of Chemical Technology and Biotechnology
4) Applied Catalysis B:Environmental
5) ACS Sustainable Chemistry and Engineering
6) Polymer

FIELD III

SYNTHETIC CHEMISTRY, BIO-CHEMISTRY-BIOACTIVE COMPOUNDS

(1) GENERAL

SCHOOL	Natural Sciences				
	Natural Sciences				
	Craduate				
	Graduate				
COURSE CODE	IIIA01		SEIVIESTER	1	
COURSE TITLE	SYNTHETIC ORGANIC CHEMISTRY- STEREOCHEMISTRY-MECHANISMS- PHOTOCHEMISTRY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	6	CREDITS
credits are awarded for the wh	vhole of the course, give HOURS				
the weekly teaching hours a	and the total credits				
		Lectures	4		6
Add rows if necessary. The orga	nisation of t	eaching			
and the teaching methods used	d are described in detail				
at (d).					
COURSE TYPE	Specialised	d General Kno	wledge		
general background,					
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	Organic Chemistry I, Organic Chemistry II, Organic				
	Chemistry III				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education

Area

- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes
- To understand
- Organic Chemistry I,
- Organic Chemistry II,
- Organic Chemistry III
- To understand the principles of quantization and the dual nature of light (particle-wave) and its interaction with matter.
- To understand how the interaction of light with the various molecules results in their absorption, emission and often their photochemical decomposition. A prerequisite for this is an understanding of the atomic and molecular orbitals of atoms and molecules.
- • To understand the differences between singlet and triplet states and to become familiar with the concept of "conic sections" which nowadays is the interpretative tool of numerous photochemical processes.
- • Understand and interpret the short lifetime of excited states and relate it to the variety of different de-excitation pathways and the concept of photonic efficiency.
- • Become familiar with and try to interpret a series of basic photochemical reactions of the various functional groups and realize the utility of light as a "green" reagent.
- To connect all the above theoretical framework with a variety of photochemical processes and technological applications (photovoltaics, photoimaging, green Photochemistry, photopolymers, plastic screens, new generation photovoltaics, integrated circuit etching, etc.)
- Knowledge
- • Knowledge and understanding of the basic concepts, principles and theories related to photochemistry and in particular to the photochemistry of organic compounds.
- • Knowledge and understanding of applications of UV/Vis, fluorescence spectroscopic methods.
- -
- Skills
- • Skills in solving and evaluating UV/Vis, fluorescence spectra.
- • Use of the appropriate spectroscopic method or combination of methods to solve mechanistic problems in Organic Photochemistry.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of

the following does the course aim?	
Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

- Search for, analysis and synthesis of data, independent working, production of novel research ideas
- Theoretical thinking and ability to understand the application of theory to a range of chemical processes and applications of new technologies using light.
- Ability to apply knowledge acquired during the period of studies from their studies in the Department of Chemistry.
- Ability to search, analyze and synthesize data and information from the international literature and their use at the level of some applications.
- Acquisition of the appropriate theoretical and practical knowledge background to enable further training at a research level.
- Ability to collaborate at team level to achieve the above goals.

(3) SYLLABUS

- Investigation of mechanisms of organic reactions.
- Kinetic data and their interpretation. Uses of isotopes (kinetic and not). Study of reactive intermediates.
- Stereochemical criteria. Structure-activity relationship.
- Symmetry of Molecular Orbitals. Pericyclic Reactions.
- Stereochemistry of organic compounds. Molecular models and molecular imaging. Configuration Analysis. Stereoisomerism. Elements of Symmetry Groups. Dynamic Stereochemistry
- Mechanistic investigation of Organic Reactions.
- Kinetic data and their interpretation. Uses of isotopes (kinetic and not). Study of reactive intermediates.
- Stereochemical criteria. Structure-activity relationship.
- Symmetry of Molecular Orbitals. Pericyclic Reactions.
- Stereochemistry of organic compounds. Molecular models and molecular imaging. Configuration Analysis. Stereoisomerism. Elements of Symmetry Groups. Dynamic Stereochemistry

- Introductory Concepts of Photochemistry Comparison with Thermal Chemistry
- Light Absorption and Electronic Excited States (*singlets, triplets, conical intersection*). Photophysical process . Light Emission. Radiative and non-radiative emission. Jablonski diagram. Energy and Electron Transfer Mechanisms
- Mechanistic Organic Photochemistry (Photochemistry of carbonyl compounds, alkenes, enones and dienones and Aromatic compounds.
- Polymers and Photochemistry, Photopolymerization, Information storage.

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	NO	
COMMUNICATIONS		
TECHNOLOGY		
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures-Seminars	100
teaching are described in detail.		
Lectures, seminars, laboratory	Projects and	50
practice, fieldwork, study and	presentations	
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
	Course total	150
The student's study hours for		
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principies of the ECIS		
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation		
procedure	Wright Examinations	
Language of evaluation	Oral examination	
methods of evaluation	Projects and presentation	ic.
summative or conclusive		IJ
multiple choice questionnaires		

ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other
Specifically-defined evaluation
criteria are given, and if and
where they are accessible to
students.

- Suggested bibliography:

1. Mechanism and theory in Organic Chemistry των Lowry, T.H και Richardson, K.S.

- 2. *Advanced Organic Chemistry, 4th ed., part A: Structure and Mechanisms*, Carey, F.A.; Sundberg, R.J. Kluwer Academic/Plenum Publishers.
- 3. Principles of General Chemistry, 2nd ed. Silberberg, M.S., McGraw Hill.

4.*The Investigation of Organic Reactions and their Mechanisms*, Maskill, H.; Blackwell Publishing.

5. *The Physical Basis of Organic Chemistry*, Maskill, H. Oxford Science Publications.

6. Principles of Chemical Kinetics, House, J.E.

7. Advanced Organic Chemistry, Smith, M.B.; March, J. 5th ed. J. Wiley & sons

8. Advanced Organic Chemistry, 5th ed., part A: Structure and Mechanisms, Carey, F.A.; Sundberg, R.J. Kluwer Academic/Plenum Publishers.

9. Γενική Οργανική Χημεία, Αλεξάνδρου, Ν.Ε., εκδόσεις Ζητη 1985.

10) ΣΗΜΕΙΩΣΕΙΣ ΟΡΓΑΝΙΚΗΣ ΦΩΤΟΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ (ΣΗΜΕΙΩΣΕΙΣ)

11) Απόστολος Ι. Μαρούλης, ο, Θεσσαλονίκη 1990-91

12) Nicholas J. Turro, V. Ramamurthy, J.C. Scaiano «Modern Molecular

Photochemistry of Organic Molecules», University Science Books, 2010

13) Martin Klessinger, Josef Michl " Excited States and Photochemistry of Organic Molecules" Wiley-VCH,1995

14) P. Suppan "Chemistry and Light" Royal Society of Chemistry, 1994

15) Axel G. Griesbeck, Jochen Mattay "Synthetic Organic Photochemistry" CRC Press,2004

(1) GENERAL

SCHOOL	Natural Sciences			
ACADEMIC UNIT	Chemistry			
LEVEL OF STUDIES	Postgraduate			
COURSE CODE	IIIA03 SEMESTER A (1 st)			A (1 st)
COURSE TITLE	BIO-ORGANIC AND BIO-INORGANIC CHEMISTRY- STRUCTURE OF PEPTIDES AND NUCLEIC ACIDS			
INDEPENDENT TEACHI	NG ACTIVIT	IES		
if credits are awarded for separ	rate compor	nents of the	WEEKLY	
course, e.g. lectures, laborato	ory exercises, etc. If the TEACHING CREDITS			G CREDITS
credits are awarded for the wh	hole of the course, give HOURS			
the weekly teaching hours o	and the total credits			
		Lectures	3	6
Add rows if necessary. The orga	ganisation of teaching			
and the teaching methods used	sed are described in detail			
at (d).				
COURSE TYPE	Specialised	l general knov	wledge (post	-graduate
general background,	course)			
special background,				
specialised general				
knowledge, skills development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	Greek and English			
and EXAMINATIONS:		5		
IS THE COURSE OFFERED TO	Yes			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

Postgraduate students are taught current trends in Bio-organic and Bio-inorganic Chemistry-structure of peptides, proteins and nucleic acids. They familiarize themselves with the strategies of modern research. They deepen and understand information about the structures of biomolecules (peptides, proteins, nucleic acids) in 3 dimensions, how these can be used for the development of bioactive molecules. At the same time, the understanding of the 3D structure of nucleic acids and proteins contributes to the understanding of their function, their interactions with other molecules and the analysis of biometric analytical markers. Additionally, they understand how metal ions interact with peptides and how these interactions in biological systems (with proteins) can lead to toxicity-carcinogenesis phenomena.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of Project planning and management data and information, with the use of Respect for difference and multiculturalism Respect for the natural environment the necessary technology Showing social, professional and ethical Adapting to new situations Decision-making responsibility and sensitivity to gender Working independently issues Team work Criticism and self-criticism Working in an international Production of free, creative and inductive environment thinking Working in an interdisciplinary environment Others... Production of new research ideas

 Search for, analysis and synthesis of data and information, with the use of the necessary technology

- Decision-making
- Working independently
- Team work
- Working in an interdisciplinary environment
- Respect for difference and multiculturalism
- Criticism and self-criticism

(3) SYLLABUS

Section 1: Peptides-proteins as molecules for cell targeting

The purpose of this thematic unit is to acquaint students with the principles governing the structure of proteins and peptides and amino acids and how these molecules can be utilized for the construction of molecular conjugates for the targeted delivery of drugs to specific subcellular organelles. The basic principles of pharmacokinetics, pharmacodynamics and biodistribution are described and it is illustrated how these can be altered by the use of proteins/peptides as transport vehicles and targeting cells.

Section 2: Metallotherapeutics

This section describes the role of metal in metalotherapeutic compounds. Evidence from the use of metals in Medicine is presented. A historical review is made of the antimicrobial properties of silver and copper compounds, the antiseptic properties of mercury compounds, and the arsenic compounds that were used as metal drugs against syphilis. Then the modern metalotherapeutics containing elements of the main groups such as tin, antimony, bismuth, silver and gold are presented. Their ex vivo, in vitro and in vivo mechanism of action is presented.

Section 3: Interaction of peptides with metal ions

In this section, the basic principles governing metal-peptides chemistry are presented. Emphasis is given in peptides that include histidine residues. Factors affecting the number, stoichiometry and thermodynamic stability of the complexes formed and especially those present at physiological pH value are also thoroughly discussed. Build on the knowledge already gained, the interaction of metal ions with peptide models of nuclear histones is investigated, and conclusions are drawn regarding metal ions induced toxicity-carcinogenesis.

Section 4. Structure of nucleic acids.

The use of crystallography in the structure of nucleic acids and oligonucleotides (fiber-single crystal) is described. The methodology of NMR spectroscopy to solve the structure of oligonucleotides and to modeling them in silico is also described. The flexibility of the nucleotide -glucosidic bond, sugar ring, phosphorodiester bond and its effect on the global DNA conformation is also examined. Geometric features of the various DNA conformations A, B, C, Z etc. Base pair mismatches, Hoogsten, hairpin structures etc. DNA-DNA interactions, triple helix, and guanine quadruplexes.

DELIVERY	Teaching courses to small g	roups of students given	
Face-to-face, Distance learning,	by several instructors (academic personnel from		
etc.	different disciplines and res	search specialties).	
USE OF INFORMATION AND	Powerpoint slides and vi	deos are used in the	
COMMUNICATIONS	lectures. The powerpoir	nt slides and videos	
TECHNOLOGY	presented, as well as co	mplementary teaching	
Use of ICT in teaching,	material (links to important research articles or		
laboratory education,	related textbooks, etc.), are freely accessible to the		
communication with students	students through teamsemail addresses of the		
	teaching staff are made available to the students		
	and are also freely us	sed as a means of	
	communication.		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	60	
teaching are described in detail.	Study	90	

Lectures, seminars, laboratory			
practice, fieldwork, study and			
analysis of bibliography,			
tutorials, placements, clinical			
practice, art workshop,	Course total	150	
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
The student's study hours for			
each learning activity are given			
as well as the hours of non-			
directed study according to the			
principles of the ECTS			
STUDENT PERFORMANCE	Language of evaluation: Gre	eek and English	
EVALUATION	Methods:		
Description of the evaluation	Written exam (which contributes to their final		
procedure	grade)		
	Each written exam may incl	ude:	
Language of evaluation,	Open-ended questions		
methods of evaluation,	Questions requiring combin	nation of knowledge	
summative or conclusive,	from different chapters		
multiple choice questionnaires,	Questions requiring critical	thinking/interpretation	
short-answer questions, open-			
ended questions, problem			
solving, written work,			
essay/report, oral examination,			
public presentation, laboratory			
work, clinical examination of			
patient, art interpretation,			
other			
Specifically-defined evaluation			
criteria are given, and if and			
where they are accessible to			
students.			

- Suggested bibliography:

Peer-reviewed articles from the literature and textbook chapters that are suggested by the academic teachers on the thematic chapter they teach. This bibliography is available to the students via teams
SCHOOL	Natural Sciences				
ACADEMIC UNIT	Chemistry				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	III04 SEMESTER A (1 st)				
COURSE TITLE	ADVANCED BIOCHEMISTRY- MODERN TOPICS IN BIOCHEMISTRY				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING		CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours o	and the tota	l credits			
		Lectures	3		6
Add rows if necessary. The organisation of teaching					
and the teaching methods used	d are described in detail				
at (d).					
COURSE TYPE	Specialised	d general know	wledge (post	-gra	duate
general background,	course)				
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:					
	Crockand	Fnalich			
	Greek and English				
	Vac				
	162				
	(https://ocourse.uci.gr/course.luiou.php?id=020)				
COORSE WEBSITE (ORL)		ourse.uoi.gr/	COULSE/ VIEW	. <u>pn</u>	<u>1:10-303]</u>

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Students are taught the most current topics in Biochemistry including the principles of modern research strategies. Using appropriate paradigms and model study systems, students are taught the mechanisms that control and regulate the biochemical action(s) and metabolism of biomolecules at the level of single molecule, cell, organ and system.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Team work
- Working in an interdisciplinary environment
- Respect for difference and multiculturalism
- Criticism and self-criticism

(3) SYLLABUS

Section 1: Cellular Biology

This section covers the following thematic areas.

- a. The intracellular localization of important biological functions.
- b. The biochemistry and molecular biology of embryonic stem cells (ESCs) including the signaling pathways that control ESCs differentiation.
- c. The biological chemistry of mitochondria. The emphasis is placed on the analysis of chemiosmotic theory, the transport of biomolecules and small molecules across the mitochondrial membranes. Novel concepts that expand the biological role of mitochondria are presented and discussed.

Section 2: Homeostatic mechanism

This section focuses on homeostatic mechanisms. Using classic and current peerviewed articles the students become familiar with the biochemical and biological principles as well as the regulatory mechanisms that control

- a. Glucose homeostasis.
- b. Oxygen Sensing
- c. Thermogenesis

Section 3: The era of -omics

This section focuses on the high throughput approaches that are used to study system biology. The students become familiar with the most current research strategies and the instrumentation that are used in genomics, transcriptomics, proteomics and metabolomics studies. Using selected peer-viewed articles the application of these strategies to address important biological questions is discussed

DELIVERY Face-to-face, Distance learning, etc.	Teaching courses to small g by several instructors (aca different disciplines and res	groups of students given ademic personnel from search specialties).
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Powerpoint slides and vi lectures. The powerpoin presented, as well as co material (links to importa related textbooks, etc.), are students through the e- University of Ioannina. The used for communication of https://ecourse.uoi.gr/cour E-mail addresses of the to available to the students ar a means of communication	ideos are used in the nt slides and videos omplementary teaching ont research articles or e freely accessible to the course system of the e-course system is also with the students (see rse/view.php?id=989) eaching staff are made and are also freely used as
TEACHING METHODS	Activity	Semester workload
TEACHING METHODS The manner and methods of	Activity Lectures	Semester workload 40
TEACHING METHODS The manner and methods of teaching are described in detail.	Activity Lectures Analysis of bibliography	Semester workload 40 30
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory	Activity Lectures Analysis of bibliography Not-guided study	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and	Activity Lectures Analysis of bibliography Not-guided study	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutarials placements clinical	Activity Lectures Analysis of bibliography Not-guided study	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice art workshop	Activity Lectures Analysis of bibliography Not-guided study	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teachina.	Activity Lectures Analysis of bibliography Not-guided study	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay	Activity Lectures Analysis of bibliography Not-guided study Course total	Semester workload 40 30 80 1 1 1 150
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Activity Lectures Analysis of bibliography Not-guided study Course total	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Activity Lectures Analysis of bibliography Not-guided study Course total	Semester workload 40 30 80
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Activity Lectures Analysis of bibliography Not-guided study Course total	Semester workload 40 30 80 1 1 1 150
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of page	Activity Lectures Analysis of bibliography Not-guided study Course total	Semester workload 40 30 80 150

(4) TEACHING and LEARNING METHODS - EVALUATION

directed study according to the	
principles of the ECTS	
STUDENT PERFORMANCE	Language of evaluation: Greek and English
EVALUATION	Methods:
Description of the evaluation	(a)Evaluation of the students in the analysis and
procedure	presentation of peer-reviewed articles that are
	assigned to them by the teaching staff:
Language of evaluation,	presentations are given at the end of the semester
methods of evaluation,	and the grades from these presentations
summative or conclusive,	contribute by 30% to their final grade
multiple choice questionnaires,	(b) Written exam (which contributes to their final
short-answer questions, open-	grade by 70%)
ended questions, problem	Each written exam may include:
solving, written work,	Open-ended questions
essay/report, oral examination,	Questions requiring combination of knowledge
public presentation, laboratory	from different chapters
work, clinical examination of	Questions requiring critical thinking/interpretation
patient, art interpretation,	
other	
Specifically-defined evaluation	
criteria are given, and if and	
where they are accessible to	
students.	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Peer-reviewed articles from the literature and textbook chapters that are suggested by the academic teachers on the thematic chapter they teach. This bibliography is available to the students in the corresponding webpage at e-course.

- Related academic journals:

See https://ecourse.uoi.gr/course/view.php?id=989

SCHOOL	Natural SC	Natural SCIENCES			
ACADEMIC UNIT	Departme	Department Of Chemistry			
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	IIIA05		SEMESTER	A٥	
COURSE TITLE	BIOLOGICAL MEMBRANES: STRUCTURE, ARCHITECTURE AND FUNCTION. BIOSIGNALLING				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHIN	G	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours of	and the tota	l credits			
		Lectures		3	3
	Project preparation			1	3
Add rows if necessary. The orga	inisation of teaching			4	6
and the teaching methods used	d are described in detail				
at (d).					
COURSE TYPE	Special bac	ckground			
general background,	Specialised general knowledge				
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	Biochemistry I, Biochemistry II				
LANGUAGE OF INSTRUCTION	Greek or English				
and EXAMINATIONS:	5				
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Students will be able to:

With the successful completion of the course the students will acquire the specific knowledge and skills to:

- Describe the concept of cell communication.
- List the differences between neuronal and endocrine communication.
- Describe the concept of receptor affinity
- Describe the basic scheme of signal transductio.
- Understand the basic principles of signal transduction mechanisms, in particular the concepts of response specificity, signal amplitude and duration, signal integration and intracellular location
- Give examples of different types of extracellular signals and receptors, and explain their functional significance
- Describe the mechanisms by which different receptors may be activated by their respective ligands
- Describe and give examples of the structure and properties of the major components of signal transduction pathways.
- Describe the signalling pathways through GPCRs, RTKs, Cytokines, TGF, TNF, Hedgehog, Notch, MAPKs, NF-kB and Wnt.

Describe the main steps, function and characteristics of Transcription factors, Apoptosis, Oncogenes and Cancer

- Review and combine data from original articles
- Resolve complex problems and questions

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical responsibility
Decision-making	and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive thinking
Working in an international	
environment	Others
Working in an interdisciplinary	
environment	
Production of new research ideas	

- Search, analysis and synthesis of data and information, by using the proper technologies.
- Autonomous work
- Working in an interdisciplinary environment
- Promoting free, creative and inductive thinking

(3) SYLLABUS

Introduction in cell signalling. Basic concepts. Classification of membrane receptors. Experimental techniques/approaches in cell signalling. Scatchard kinetics Signalling pathways via receptors:

- GPCRs
- RTKs
- Κυτοκινών
- TGF
- TNF
- Hedgehog
- Notch
- Wnt

Second messenger systems Protein kinases/phosphatases and GTPases Transcription factors Nuclear Receptors Apoptosis Oncogenes / Tumor suppressors / Cancer Exploitation of cell signalling for pharmacological/chemical targeting in disease Genetically modified animal models in cell signalling

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Use of PowerPoint in lectures.		
COMMUNICATIONS	 Projection and analys 	is of scientific videos	
TECHNOLOGY	Communication with	the students via email.	
Use of ICT in teaching,			
laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	39	
teaching are described in detail.	Study and self	55	
Lectures, seminars, laboratory	preparation		
practice, fieldwork, study and	Projects preparation	56	
analysis of bibliography,	and presentation		
tutorials, placements, clinical			
practice, art workshop,	Course total 150		
interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
The student's study hours for			
each learning activity are given			
as well as the hours of non-			
directed study according to the			
principles of the ECIS			
STUDENT PERFORMANCE		/) ··· ·· ··	
EVALUATION	Written examination (70%	6), with questions requiring	
Description of the evaluation	analytical answers, multiple choice and short-answer		
procedure	questions.		
	Optional written projects with public presentation (30%).		

Language of evaluation,
methods of evaluation,
summative or conclusive,
multiple choice questionnaires,
short-answer questions, open-
ended questions, problem
solving, written work,
essay/report, oral examination,
public presentation, laboratory
work, clinical examination of
patient, art interpretation,
other
Specifically-defined evaluation
criteria are given, and if and
where they are accessible to
students.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Βιολογικές μεμβράνες. Από τη δομή στις λειτουργίες. Θεωρία και πειραματικές προσεγγίσεις ΜΕ Λέκκα, Γ Λεονταρίτης, Κ Γαλανοπούλου, Ει Κητσιούλη ISBN: 978-960-603-387-2, [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. <u>www.kallipos.gr</u>. In<u>http://hdl.handle.net/11419/4307</u>
- Molecular cell biology , 2015, Lodish et al, 7th edition, Freeman Co, NY

- Related academic journals:

- Trends in Biochemical Sciences
- Nature
- Science

SCHOOL	Natural Sciences				
DEPARTMENT	Chemistry				
STUDY LEVEL	Postgraduate				
COURSE CODE	IIIB04		SEMESTER	2	
COURSE NAME	SYNTHESIS AND CHARACTERIZATION LABORATORY I				
TEACHING ACT if credits are awarded in separ eg Lectures, laboratory practi awarded the same for the enti indicate the hours per week a	IVITIES ate parts of cals, etc. If ire course, t nd the tota	the course credits are hey should l of credits	WEEKLY LECTURE HOURS		CREDITS
			5		5
		· · - · ·			
TYPE OF COURSE	Scientific area / Developing skills				
general background,					
special background,					
general knowledge					
developing skills					
PREREQUISITE COURSES:	There are no prerequisites. However, the knowledge of basic principles of inorganic chemistry with emphasis on coordination compounds (complexes) is desirable.				
LANGUAGE TEACHING and	Greek				
EXAMINATION:					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	It does not	: exist			

(2) LEARNING OUTCOMES

Learning outcomes

The learning outcomes of the course the specific knowledge, skills and abilities appropriate level that will equip students after successful completion of the course are described

Refer to Appendix A

• Description of the Level of Learning Outcomes for each course according to the Qualifications Framework of the European Higher Education Area

• Indicators Descriptors Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B.

• Summary writing Guide of Learning Outcomes

• The aim of the course is to teach and consolidate principles of inorganic chemistry through appropriate laboratory exercises and to train students in synthesis and characterization techniques of inorganic compounds

• After successful completion of the course students should be able to:

1. To recognize the contribution of inorganic chemistry to the development of chemistry and other related branches of science.

2. To be able to synthesize COMPLEXES compounds using appropriate synthetic methods.

3. Be able to isolate complexes compounds in pure form using appropriate purification methods.

4. To know some characteristic properties (geometry, mode of integration, etc.) of various metal ions.

4. Understand geometric isomerism (eg cis, trans) in inclusion compounds.

5. To know principles (stability of oxidation states, kinetics, etc.) regarding the chemistry of inclusion of transition metals and elements of main group groups, etc.6. To recognize the different ways of incorporating substitutes (monodental, chelating, bridging, etc.).

7. Interpret infrared and visible-UV spectroscopic data of inorganic compounds and be led to conclusions about the way of inclusion of substituents, geometry, isomerism, symmetry, crystal field crossing energy, etc.

9. To be able to estimate and evaluate biological biochemical mechanical catalytic properties of compounds and their technological importance.

Knowledge

Knowledge and understanding of basic concepts, principles and theories related to the synthesis and physicochemical characterization of coordination compounds.

Skills

Skills in the synthesis and purification of coordination compounds, use of spectrometers and the magnetic balance, interpreting IR and visible-ultraviolet spectroscopic data, processing magnetic susceptibility data at room temperature. Complex problem solving skills through careful analysis of the data provided.

Capacities

Ability to apply the knowledge provided in troubleshooting (theoretical and synthetic) relating to Inorganic Chemistry.

Ability to prepare coordination compounds in pure form.

Ability to use spectrometers and magnetic balance.

Ability to interpret spectroscopic data.

Ability not only to work independently but also to interact with other students on the course topics.

General Skills

Taking into account the general competences to be acquired by the graduate (as listed in the DS and listed below) what / which of these skills the course is aimed ?

Search, analysis and synthesis of data	Design and project management
and information, the use and the	Respect for diversity and multiculturalism
necessary technologies	Respect for the natural environment
Adapting to new situations	Demonstrate social, professional and moral
Decision making	responsibility and sensitivity to gender
Autonomous work	issues
Teamwork	Criticism and self-criticism
Working in an international	Promotion of free, creative and inductive
environment	thinking
Work in a multidisciplinary	
environment	Other
Generate new research ideas	

The general skills that should be acquired by the student and in which the course aims are:

Search, analysis and synthesis of data and information and making decisions. Turning theory into practice.

Promotion of free, creative and inductive thinking.

Independent and teamwork.

Acquisition of the appropriate theoretical and practical knowledge base to enable the further training both in theory (in more specific subjects of Inorganic Chemistry) and in laboratory. Instructor Professor M Louloudi (2X5 hours) Synthesis of hybrid materials, through surface chemical modification, for catalytic applications & their characterization.

Instructor Professor A. Garoufis (2X5 hours) Synthesis of transition element polypyridine compounds. Characterization by Nuclear Magnetic Resonance (NMR) methods

Instructor Professor G Malandrinos (2X5 hours) Spectroscopic and physicochemical characterization of the interaction of metal ions with peptide models

Instructor Professor Professor E Manos (2x5 hours) Hydrothermal synthesis and characterization of semiconducting metal chalcogenides

Instructor Professor A Tsipis (2X5 hours) Photocatalytic conversion of CO2 to CO.

Instructor Professor I. Plakatouras (2X5 hours) Synthesis and improvement of mass transfer properties of precursor compounds for the fabrication of thin film ceramic materials

Teaching Professor S. Hadjikakou (2x5 hours) Drug Activation (Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Antibiotics or Anti-Thyroids) with Principal Group Elements of the Periodic Table Composition and Characterization

LECTURE DELIVERY METHOD	Face to Face			
Face to Face, distance learning				
к.λπ.				
USE OF INFORMATION AND	Electronic communication with students.			
COMMUNICATION	Post-exercise additional notes etc. on the			
TECHNOLOGIES	websites of teachers			
Using ICT in Teaching ,				
Laboratory Training and in				
Communication with the				
students				
ORGANIZING THE TEACHING	SEMESTER WORK			
Describe in detail the methods	ACTIVITY	LOAD		
of teaching.	Lectures	15		
Lectures, Seminars, Laboratory	Laboratory exercise	70		
Exercise, Field Exercise, Study	Tutorial 15			
and literature analysis, Tutorial,	Writing work 15			
Practice (Placement), Clinical	Individual study and	35		
Practice, Art Workshop,	preparation			
Interactive teaching, Study				

(4) TEACHING and LEARNING METHODS - EVALUATION

Visits, Study (project), Writing job / work, Artistic creation etc.			
Enter the hours of study for each student learning activity and hours of Non-guided study in accordance with the principles of ECTS	TOTAL (25 hours of work load per credit)	150	
STUDENT EVALUATION			
Description of the evaluation process Assessment Language,	The students are gra assignments in the con exercises, oral and / or a s during the laboratory con examinations at the end	aded based on their ntext of the laboratory short written examination urse and through written of the semester. Their	
Methods of assessment Formative or Concluding, Test Multiple Choice Questions	assignments include the development of basic theory-purpose of the exercises, the experimental		
Short Answer, Development	The final exam include:		
Questions Essays, Problem Solving, Written Work, Report / Report, Oral Examination,	Short Answer Questions, problem solving	crisis, development, and	
Public Presentation, Laboratory Work, Clinical Examination Patient Artistic Interpretation	All these criteria are expla start of the course.	ained to students at the	
Other / other			
Indicate clearly defined evaluation criteria and whether and which are accessible to students.			

(5) SUGGESTED LITERATURE

-SUGGESTED LITERATURE :

EYDOXOS

1., "BIOINORGANIC CHEMISTRY, Vol. 2: Synthesis and Study of Coordination Compounds", Thessaloniki 2006.

2., «Synthesis and Study of metal complexes", Thessaloniki 1999.

OTHERS

1. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edition, Parts A and B", Willey-Interscience

Pubs, 1997.

2. Butler, Harrod, «Inorganic Chemistry: Principles and Application», 1994

3. A.B.P. Lever, "Inorganic electronic spectroscopy (second edition), Elsevier, 1984

4. Zvi Szafran, Ronald M. Pike, Mono M. Singh, "Microscale Inorganic Chemistry", J. Wiley (1991).

5. <u>http://orgchem.colorado.edu/hndbksupport/irtutor/tutorial.html</u>

6.http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm

7. <u>http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi</u>

8.<u>http://symmetry.otterbein.edu/tutorial/index.html</u>

9. http://chemistry.bd.psu.edu/jircitano/TSdiagram.pdf

-Related Scientific Journals: Inorganic Chemistry European Journal of Inorganic Chemistry Journal of Chemical education Polyhedron Inorganic Synthesis

SCHOOL	School of S	School of Sciences			
ACADEMIC UNIT	Chemistry				
LEVEL OF STUDIES	Post-graduate				
COURSE CODE	IIIA07		SEMESTER	Α ((1 st)
COURSE TITLE	LABORATORY OF BIOCHEMISTRY I				
INDEPENDENT TEACH	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY TEACHING HOURS		
course, e.g. lectures, laborato	ry exercises,	etc. If the			CREDITS
credits are awarded for the wh	hole of the c	ourse, give			
the weekly teaching hours of	and the tota	l credits			
		Lectures	5		5
Add rows if necessary. The orga	rganisation of teaching				
and the teaching methods used	are describe	ea în aetali			
	Scientific 2ro2 / Doveloping Skills				
course TTPE					
special background					
special buckground,					
knowledge skills development					
PREREOUISITE COURSES:	There are i	no prereguisi	tes. However	th:	e
	knowledge	e of basic prin	ciples of inor	gan	nic
	chemistry with emphasis on coordination				
	compounds (complexes) is desirable.				
LANGUAGE OF INSTRUCTION	Greek and English				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	It does not exist				

(2) LEARNING OUTCOMES

Learning outcomes

The learning outcomes of the course the specific knowledge, skills and abilities appropriate level that will equip students after successful completion of the course are described

Refer to Appendix A

• Description of the Level of Learning Outcomes for each course according to the Qualifications Framework of the European Higher Education Area

• Indicators Descriptors Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B.

• Summary writing Guide of Learning Outcomes

The aim of the course is to teach and consolidate principles of biochemistry through appropriate laboratory exercises and to train students in synthesis and characterization techniques of inorganic compounds

• After successful completion of the course students should be able to:

1. To recognize the contribution of biochemistry to the development of chemistry and other sciences.

2. To understand the basic principles that govern bacterial cells growth and culture and be able to maintain and expand bacterial cells cultures

3. To understand the principles of mammalian cells culture, be able to maintain, expand and store mammalian cells.

4. To perform enzymatic reactions, calculate kinetic parameters and evaluate the results of these assays.

5. To isolate organelles, biomolecules and bioactive molecules from cells.

6. To test the purity of the isolated biomolecules/organelles/compounds using the appropriate assays and specific markers

7. To understand the principles of PCR and perform the PCR assay

Knowledge

Knowledge and understanding of basic concepts, principles, theories and assays related to the isolation, handling and function of biomolecules

Skills

Skills in the handling of cells, isolation of biomolecules using biochemical and molecular biology related assays

Problem solving skills through careful analysis of the data provided.

Capacities

Ability to use the acquired theoretical knowledge and apply it to laboratory setting.

Ability to handle, isolate and assay the function of biomolecules.

Ability to use biochemical assays and instrumentation.

Ability not only to work independently but also to interact with other students on the course topics.

General Skills

Taking into account the general competences to be acquired by the graduate (as listed in the DS and listed below) what / which of these skills the course is aimed ?

Design and project management
Respect for diversity and multiculturalism
Respect for the natural environment
Demonstrate social, professional and moral responsibility and
sensitivity to gender issues
Criticism and self-criticism
Promotion of free, creative and inductive thinking
Other

The general skills that should be acquired by the student and in which the course aims are:

Search, analysis and synthesis of data and information and making decisions. Turning theory into practice.

Promotion of free, creative and inductive thinking.

Independent and teamwork.

Acquisition of the appropriate theoretical and practical knowledge base to enable the further training both in theory (in more specific subjects of Biochemistry) and in laboratory.

(3) TEACHING and LEARNING METHODS - EVALUATION

LECTURE DELIVERY METHOD Face to Face, distance learning κ.λπ.	Face to Face			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Using ICT in Teaching , Laboratory Training and in Communication with the students	Electronic communication with students. Post-exercise additional notes etc. on the websites of teachers			
ORGANIZING THE TEACHING	ACTIVITY SEMESTER WORK LOA			
Describe in detail the methods of teaching. Lectures, Seminars, Laboratory, Exercise, Field	Lectures	20		
Exercise, Study and literature analysis, Tutorial,	Laboratory practice	200		
Practice (Placement), Clinical Practice, Art Workshop, Interactive teaching, Study Visits,	Tutorial	45		
Study (project), Writing job / work, Artistic	Writing work	20		
	Individual study and	15		
Enter the hours of study for each student learning activity and hours of Non-guided study	preparation			
in accordance with the principles of ECTS				
	TOTAL 300			
STUDENT EVALUATION				
Description of the evaluation process	The students are graded b in the context of the labor	ased on their assignments atory exercises, oral and /		
Assessment Language, Methods of assessment Formative or Concluding, Test Multiple Choice, Questions Short Answer, Development Questions Essays, Problem Solving, Written	nt in the context of the haboratory excretises, of at and 7 or a short written examination during the laboratory course and through written examinations at the end of the semester. Their assignments include the development of basic theory-purpose of the exercises, the experimental procedure and analysis- interpretation of results. The final exam include: Short Answer Questions, crisis, development, and problem solving			
Work, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Clinical Examination Patient Artistic Interpretation Other / other				
Indicate clearly defined evaluation criteria and whether and which are accessible to students.				
	All these criteria are explained to students at the start of the course.			

SCHOOL	Natural SC	IENCES			
ACADEMIC UNIT	Departme	Department Of Chemistry			
LEVEL OF STUDIES	Postgradua	Postgraduate			
COURSE CODE	IIIB01		SEMESTER	В	
COURSE TITLE	BIOCHEMISTRY OF XENOBIOTIC COMPOUNDS_BIOTECHNOLOGICAL APPLICATIONS			PPLICATIONS	
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	G	CREDITS
credits are awarded for the wh	nole of the c	HOURS			
the weekly teaching hours a	and the tota	l credits			
		Lectures		3	3
	Project preparation			1	3
Add rows if necessary. The orga	nisation of t	eaching		4	6
and the teaching methods used	are describe	ed in detail			
at (d).					
COURSE TYPE	Special bac	ckground			
general background,	Specialised	l general knov	wledge		
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	Biochemistry I, Biochemistry II				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

With the successful completion of the course the students will have the specific knowledge and skills to:

• Define xenobiotic compounds

- Explain the chemical /physicochemical properties and toxicity of xenobiotics
- Describe how they penetrate and distribute in the body
- Describe the logic of phase I, II and III reactions in microbes and eukaryotes.
- Illustrate characteristic reactions of Phase I, II and III reactions/procedures
- Implement the knowledge gained to accumulate data from original articles
- Design the biotransformation pattern of given compounds
- Resolve complex problems and questions
- Evaluate the impact of given xenobiotics on the environment, based on their biotransformations

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility
Decision-making Working independently	and sensitivity to gender issues
Team work	Production of free creative and inductive thinking
Working in an international	
environment	Others
Working in an interdisciplinary	
environment	
Production of new research ideas	

- Search, analysis and synthesis of data and information, by using the proper technologies.
- Autonomous work
- Working in an interdisciplinary environment
- Promoting free, creative and inductive thinking

(3) SYLLABUS

Basic concepts, definitions, chemical/physicochemical properties. Toxicity Endogenous Biochemical Defense systems Absorption and distribution. Selectivity.

Metabolism of xenobiotics-and biotransformations

- Phase I reactions
- Phase II reactions (Conjugation reactions)
- Phase III: Elimination of xenobiotics and metabolites
- Enzymic systems of biotransformations (oxidases, reductases, P₄₅₀ monooxygenases, , glutathionyltrasferases, glucorunydyltransferases ect)

Transporters (with emphasis in ABC-transporters)

Microbial metabolism of xenobiotic compounds: aerobic and anaerobic metabolism

- Microbial oxidoreductases
- Microbial oxygenases
- Microbial monooxygenases
- Flavin monooxygenases

- P₄₅₀ Monooxygenases
- Microbial dioxygenases
- Ring hydroxylating dioxygenases
- Ring-cleavage dioxygenases
- Microbial peroxidases
- Microbial laccases
- Microbial hydrolytic enzymes
- Biodegradation of alkanes
- Biodegradation of aromatic hydrocarbons
- Biodegradation of polycyclic aromatic hydrocarbons
- Chemical and biochemical degradation of pharmaceuticals and pesticides

Bioremediation and Environmental Assessment

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face			
Face-to-face, Distance learning,				
etc.				
USE OF INFORMATION AND	Use of PowerPoint in lectures.			
COMMUNICATIONS	 Projection and analysis 	is of scientific videos		
TECHNOLOGY	Communication with	the students via email.		
Use of ICT in teaching,				
laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	40		
teaching are described in detail.	Study and self	55		
Lectures, seminars, laboratory	preparation			
practice, fieldwork, study and	Projects preparation	55		
analysis of bibliography,	and presentation			
tutorials, placements, clinical				
practice, art workshop,	Course total 150			
interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
The student's study hours for				
each learning activity are given				
as well as the hours of non-				
directed study according to the				
principles of the ECTS				
STUDENT PERFORMANCE				
EVALUATION	Written examination (70%	%), with questions requirin	g	
Description of the evaluation	analytical answers, multip	ble choice and short-answ	er	
procedure	questions.			
Language of evaluation,	Optional written projects	with public presentation	(30%).	
methods of evaluation,				
summative or conclusive,				
multiple choice questionnaires,				
short-answer questions, open-				

ended	questions,	problem
solving,	written	work,
essay/re	port, oral exc	amination,
public p	resentation, l	laboratory
work, c	linical exami	nation of
patient,	art inter	pretation,
other		
Specifica	lly-defined e	evaluation
criteria	are given, a	nd if and
where t	hey are acc	essible to
students		

(5) ATTACHED BIBLIOGRAPHY

Suggested bibliography:

- Introduction to Biochemical Toxicology, E Hodgson, RC Smat (1994), 2nd edition, Wiley Interscience, NY
- Biodegradation and Bioremediation Singh, Ajay, Ward, Owen P. (Eds.) 2004, Springer ISBN 978-3-662-06066-7
- Βιολογικές μεμβράνες. Από τη δομή στις λειτουργίες. Θεωρία και πειραματικές προσεγγίσεις ΜΕ Λέκκα, Γ Λεονταρίτης, Κ Γαλανοπούλου, Ει Κητσιούλη ISBN: 978-960-603-387-2, [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.
 www.kallipos.gr. In http://hdl.handle.net/11419/4307
- Microbial Bioremediation of Non-metals. Koukkou AI, (ed) 2011Norfolk, UK: Caister Academic Press, ISBN 978-1-904455-83-7

Related academic journals:

- The Journal of Xenobiotics
- Environmental Science and Technology
- Applied Environmental Microbiology
- Biodegradation
- Ecotoxicology and Environmental safety

SCHOOL	Natural Sciences			
ACADEMIC UNIT	Chemistry			
LEVEL OF STUDIES	Post-graduate			
COURSE CODE	IIIB02		SEMESTER	A (1 st)
COURSE TITLE	CHEMISTRY OF DIAGNOSTIC AND PHARMACEUTICAL COMPOUNDS			
INDEPENDENT TEACHI	NG ACTIVIT	IES		
if credits are awarded for sepa	rate compor	nents of the	WEEKLY	
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	CREDITS
credits are awarded for the wh	vhole of the course, give HOURS			
the weekly teaching hours a	and the tota	l credits		
		Lectures	3	6
Add rows if necessary. The orga	nisation of t	eaching		
and the teaching methods used	nd the teaching methods used are described in detail			
at (d).				
COURSE TYPE	Specialised	l general knov	wledge (post-	graduate
general background,	course)			
special background,				
specialised general				
knowledge, skills development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	Greek and English			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	Yes			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

Postgraduate students are taught the current trends in the design, synthesis and evaluation of pharmaceutical molecules, diagnostic and therapeutic molecules. They deepen and understand information on how to select candidate pharmaceutical targets in a disease and how the specific target can be exploited for the design of molecules that will target it, with an emphasis on cancer. The basic principles of designing molecules with theoretical calculations (in silico docking calculations) are mentioned. Lipinski's drug-likeness rules are described as well as parameters that may affect the pharmacokinetics of molecules. In addition, elements of the tumor microenvironment are described and how these can be exploited in the design of more effective therapeutic and diagnostic molecules. Also, the synthetic process of the designed molecules is taught as well as the biological evaluation methodology is presented.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

, ,	
Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Team work
- Working in an interdisciplinary environment
- Respect for difference and multiculturalism
- Criticism and self-criticism

(3) SYLLABUS

Section 1: Targeting the tumor cell microenvironment for the development of diagnostic, therapeutic and therapeutic molecules

The purpose of this thematic unit is to acquaint students with the principles that govern the characteristics of the microenvironment of cancer cells in relation to helthy cells and how candidate pharmaceutical targets can be selected. The

characteristics that a drug target should have are described. The basic principles of drug likeness of Lipinski are taught as well as the basic principles of pharmacokinetics and factors that influence it are explained. In silico tools for designing molecules to target a candidate therapeutic target are then presented. Then, students are taught methodologies for exploiting the tumor microenvironment (pH, about enzyme/receptor overexpression, biomarkers, ROS, GSH, EPR, etc.) to design molecules that will target the specific microenvironments and selectively transport and release the cytotoxic agent to these cells. The basic architecture of effective molecules that carry the cytotoxic agent, the microenvironment targeting unit and the linker that responds to the tumor cell microenvironment is described. The basic principles of their design and synthesis (peptide-drug conjugates, antibody-drug conjugates, etc.) are described for a number of molecules. At the same time, principles are described for the design of turn-on diagnostic molecules based on the enhancement of its fluorescence (near-infrared region) once the microenvironment of cancer cells is detected. The basic principle of designing, synthesizing and evaluating molecules that combine features of diagnostic and therapeutic molecules is also presented.

Section 2: Antithyroid drugs

(a) In this section the chemistry and mechanism of action of antithyroid drugs is described, the biosynthesis of thyroid hormones is analyzed, the enzymes that take part in the mechanism are described and finally the Chemical action of antithyroid drugs is emphasized. (b) Also in this section, reference is made to the development of resistance of microbes to modern antibiotics and reference is made to the mechanism of action of metal antibiotics such as silver sulfadiazine, nano silver, etc. (c) Finally, reference is made to the chemistry of pnictide compounds and their role to the activation mechanism of the cancer cell apoptosis pathway through mitochondrial inhibition.

Section 3: Platinum chemotherapeutic compounds

The action-mechanism of platinum chemotherapeutic compounds and the structural alterations of the nucleic acids that they cusses are described. Introduction in the chemistry of platinum(II)/(IV). The synthesis of cisplatin, carboplatin and oxaliplatin in the pharmaceutical industry is described. The synthesis of novel platinum compounds that are in advanced clinical trials, such as pyriplatin, pheanthriplatin, etc. is described with emphasis on their synthetic methodology. The chemistry of gold compounds is introduced and the synthesis and action-mechanism of Auranofin is described.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Teaching courses to small groups of students given by several instructors (academic personnel from different disciplines and research specialties).				
USE OF INFORMATION AND	Powerpoint slides and videos are used in the				
COMMUNICATIONS	lectures. The powerpoint slides and videos				
TECHNOLOGY	presented, as well as complementary teaching				
Use of ICT in teaching,	material (links to important research articles or				
laboratory education,	related textbooks, etc.), are freely accessible to the				
communication with students	students through teamsemail addresses of the				

	teaching staff are made available to the students			
	and are also freely used as a means of			
	communication.			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	60		
teaching are described in detail.	Study	90		
Lectures, seminars, laboratory				
practice, fieldwork, study and				
analysis of bibliography,				
tutorials, placements, clinical				
practice, art workshop,				
interactive teaching,	Course total	150		
educational visits, project, essay				
writing, artistic creativity, etc.				
The student's study hours for				
each learning activity are given				
as well as the hours of non-				
directed study according to the				
principles of the ECTS				
STUDENT PERFORMANCE	Language of evaluation: Gre	eek and English		
EVALUATION	Methods:			
Description of the evaluation	Written exam (which contri	butes to their final		
procedure	grade)			
	Each written exam may incl	ude:		
Language of evaluation,	Open-ended questions			
methods of evaluation,	Questions requiring combin	hation of knowledge		
summative or conclusive,	from different chapters			
multiple choice questionnaires,	Questions requiring critical	thinking/interpretation		
short-answer questions, open-				
ended questions, problem				
solving, written work,				
essay/report, oral examination,				
public presentation, laboratory				
work, clinical examination of				
patient, art interpretation,				
other				
Constitution define de la constitución				
specifically-aefinea evaluation				
criteria are given, and if and				
where they are accessible to				
students.				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Peer-reviewed articles from the literature and textbook chapters that are suggested by the academic teachers on the thematic chapter they teach. This bibliography is available to the students via teams

SCHOOL	Natural SC	Natural SCIENCES			
ACADEMIC UNIT	Chemistry				
LEVEL OF STUDIES	Post-Graduate				
COURSE CODE	IIIB03		SEMESTER	3	
COURSE TITLE	TOTAL SYNTHESIS OF NATURAL PRODUCTS AND PHARMACEUTICAL COMPOUNDS				
INDEPENDENT TEACHI if credits are awarded for separ course, e.g. lectures, laborato	ING ACTIVITIESarate components of theory exercises, etc. If theTEACHINGCREDITS			CREDITS	
the weekly teaching hours c	nole of the c and the tota	ourse, give I credits	HOURS		
			4	6	
Add rows if necessary. The orga	anisation of teaching				
and the teaching methods used at (d).	are describe	ed in detail			
COURSE TYPE	Special background, general knowledge			ge	
general background,	specialization				
special background,					
specialised general					
	According	to the underg	raduate prog	am there	
	According				
	are no pre	requisites. Ho	owever, to und	erstand the	
	course, requires good knowledge of basic organic				
	chemistry, organic synthetic methods and				
	mechanisms of the reactions.				
LANGUAGE OF INSTRUCTION	GREEK				
IS THE COURSE OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Knowledge

- Understanding the principles of the logic of total syntheses, the rules and methodology.

- Understanding the logic of total syntheses and the approach of complex organic compounds, such as natural and synthetic compounds with biological and medicinal-pharmaceutical activity.

Skills

-Widening the scientific horizon and deepening in organic synthesis.

-Design of complex multi-stage organic syntheses.

Abilities

-Ability to apply his knowledge and judgment to deal with synthetic problems of organic chemistry.

-Ability to approach and understand the structure of complex organic compounds

with pharmaceutical or biological activity, to design and propose the most

appropriate synthetic route of them.

-Ability to research the international literature and extract information in order to solve complex synthetic problems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical

Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	

- Theoretical training and acquisition of skills for the approach of interdisciplinary issues-problems.

-Ability to search for scientific information from the international literature,

comprehension and presentation.

- Team work in a laboratory and in an international interdisciplinary environment.

(3) SYLLABUS

1. Introduction to total synthesis and basic reactions

Review of basic mechanisms of organic reactions-carbon chain length increase reactions. Protecting group chemistry, introduction and removal of protecting groups. Metal organic compounds and metal organic reactions. Convergent and divergent synthetic strategy. Chemo-, region-, and stereoselective reactions (enantio- and diastereoselective reactions). Disconnection approach-retrosynthetic analysis of complex compounds (natural and synthetic).

2. General review problems

Total synthesis of natural products: Estrone, Isocomene, Periplanone, Capnellene, Zingolide, etc.

Total synthesis of pharmaceutical and biogenic organic compounds: Brufen, Zyrtec, Plavix, Esmolol, Iscover, Imatinib, Nilotinib, Sorafenib, Adrenaline, etc.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Lecturing
Face-to-face, Distance learning,	
etc.	

USE OF INFORMATION AND	Electronic communication with students.				
COMMUNICATIONS					
TECHNOLOGY					
Use of ICT in teaching,					
laboratory education,					
communication with students					
TEACHING METHODS	Activity Semester workload				
The manner and methods of	Lectures-Presentations	50			
teaching are described in detail.	Individual study-	50			
Lectures, seminars, laboratory	Learning				
practice, fieldwork, study and					
analysis of bibliography,					
tutorials, placements, clinical					
practice, art workshop,					
interactive teaching,					
educational visits, project, essay					
writing, artistic creativity, etc.					
	Course total				
The student's study hours for	(20 hours of workload				
each learning activity are given		120			
as well as the nours of non-	per credit unit)				
airected study according to the					
STUDENT DEDEODMANCE					
	The ovaluation of student	s will be done with a			
Description of the evaluation		s will be dolle with a			
procedure	written exam that includ	es:			
	-Development of issues				
Language of evaluation,	-Short answer questions				
summative or conclusive	-Answers to crisis questio	ns-problem solving			
multiple choice questionnaires		ns-problem solving.			
short-answer questions open-					
ended questions problem					
solving written work					
essav/report. oral examination.					
public presentation. laboratory					
work. clinical examination of					
patient. art interpretation.					
other					
-					
Specifically-defined evaluation					
criteria are given, and if and					
where they are accessible to					
students.					

(5) ATTACHED BIBLIOGRAPHY

-Total Synthesis of Natural Products, Volume 1-11.

-Teachers notes

SCHOOL	School of Sciences				
ACADEMIC UNIT	Chemistry				
LEVEL OF STUDIES	Post-graduate				
COURSE CODE	IIIB05 SEMESTER 2nd				d
COURSE TITLE	LABORATORY OF BIOCHEMISTRY II				
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate components of the		WEEKLY TEACHING		CREDITS
course, e.g. lectures, laborato	ry exercises, etc. If the				
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours o	nd the total credits				
	Lectures 5 5			5	
Add rows if necessary. The orga	cessary. The organisation of teaching				
and the teaching methods used	ure describe	ea maetan			
	Scientific area/ Developing Skills				
aeneral background					
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	There are no prerequisites. However, the				
	knowledge of basic principles of inorganic				
	chemistry with emphasis on coordination				
	compounds (complexes) is desirable.				
LANGUAGE OF INSTRUCTION	Greek and English				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	It does not exist				

(2) LEARNING OUTCOMES

Learning outcomes

The learning outcomes of the course the specific knowledge, skills and abilities appropriate level that will equip students after successful completion of the course are described

Refer to Appendix A

- Description of the Level of Learning Outcomes for each course according to the Qualifications Framework of the European Higher Education Area
- Indicators Descriptors Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B.
- Summary writing Guide of Learning Outcomes

The aim of the course is to teach and consolidate principles of biochemistry through appropriate laboratory exercises and to train students in synthesis and characterization techniques of inorganic compounds

• After successful completion of the course students should be able to:

1. To clone genes in expression vectors, express these genes in cell models, isolate the expressed protein

To perform reverse transcription reaction in order to synthesize a gene or part of it
 To understand enrichment strategies (affinity and chemical) and apply them to enrich for post translationally modified proteins.

4. To perform 1-D and 2-D protein electrophoresis.

- 5. To assess protein expression by western blot analysis and flow cytometry.
- 6. To handle and prepare biological samples for mass spectrometry based analysis
- 7. To process and analyzed data generated in MS-based proteomic studies

Knowledge

Knowledge and understanding of the basic concepts of cloning, protein isolation, protein expression and large scale data analysis

Skills

Skills in advanced assays in molecular biology and proteomics

Problem solving skills through careful analysis of the data provided.

Capacities

Ability to use the acquired theoretical knowledge and apply it to laboratory setting.

Ability to handle, isolate and assay the function of biomolecules.

Ability to use analytical, biochemical and molecular biology assays and the corresponding instrumentation.

Ability not only to work independently but also to interact with other students on the course topics.

General Skills

Taking into account the general competences to be acquired by the graduate (as listed in the DS and listed below) what / which of these skills the course is aimed ?

Search, analysis and synthesis of data and information,	Design and project management
the use and the necessary technologies	Respect for diversity and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision making	Demonstrate social, professional and moral responsibility and
Autonomous work	sensitivity to gender issues
Teamwork	Criticism and self-criticism
Working in an international environment	Promotion of free, creative and inductive thinking
Work in a multidisciplinary environment	
Generate new research ideas	Other

The general skills that should be acquired by the student and in which the course aims are:

Search, analysis and synthesis of data and information and making decisions. Turning theory into practice.

Promotion of free, creative and critical thinking.

Independent and teamwork.

Acquisition of the appropriate theoretical and practical knowledge base to enable the further training both in theory (in more specific subjects of Biochemistry) and in laboratory.

(3) TEACHING and LEARNING METHODS – EVALUATION

LECTURE DELIVERY METHOD Face to Face, distance learning κ.λπ.	Face to Face
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Using ICT in Teaching , Laboratory Training and in Communication with the students	Electronic communication with students. Post-exercise additional notes etc. on the websites of teachers

ORGANIZING THE TEACHING	ΑCTIVITY	SEMESTER WORK LOAD			
Describe in detail the methods of teaching. Lectures Seminars Laboratory Exercise Field	Lectures	20			
Exercise, Study and literature analysis, Tutorial,	Laboratory practice 200				
Practice (Placement), Clinical Practice, Art Workshop, Interactive teaching, Study Visits	Tutorial	45			
Study (project), Writing job / work, Artistic	Writing work	20			
creation etc.	Individual study and	15			
Enter the hours of study for each student	preparation				
in accordance with the principles of ECTS					
	TOTAL	300			
STUDENT EVALUATION					
Description of the evaluation process	The students are graded based on their assignments				
Assessment Language, Methods of assessment Formative or Concluding, Test Multiple Choice,	t or a short written examination during the laborator				
Questions Short Answer, Development Questions Essays, Problem Solving, Written	of the semester. Their	assignments include the			
Work, Report / Report, Oral Examination, Public	$\frac{1}{c}$ development of basic theory-purpose of th				
Examination Patient Artistic Interpretation	exercises, the experimenta	al procedure and analysis-			
Other / other	 interpretation of results. The final exam include: Short Answer Questions, crisis, development, and problem solving 				
Indicate clearly defined evaluation criteria and					
whether and which are accessible to students.					
	All these oritoric are seed.	ained to students at the			
	An mese criteria are explained to students at the				
	start of the course.				

SCHOOL	Natural Sc	Natural Sciences			
DEPARTMENT	Chemistry				
STUDY LEVEL	Postgfraduate				
COURSE CODE	IIIA06 SEMESTER 1				
COURSE NAME	SYNTHESIS AND CHARACTERIZATION LABORATORY II				
TEACHING ACTIVITIES if credits are awarded in separate parts of the course eg Lectures, laboratory practicals, etc. If credits are awarded the same for the entire course, they should indicate the hours per week and the total of credits		WEEKLY LECTURE HOURS		CREDITS	
			5		5
TYPE OF COURSE	Scientific area / Developing skills				
general background,					
special background,					
specialization,					
developing skills					
PREREOUISITE COURSES:	There are no prerequisites. However, the				
	knowledge of basic principles of inorganic				
	chemistry with emphasis on coordination				
	compounds (complexes) is desirable.				
LANGUAGE TEACHING and	Greek				
EXAMINATION:					
THE COURSE IS OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	It does not exist				

(2) LEARNING OUTCOMES

Learning outcomes

The learning outcomes of the course the specific knowledge, skills and abilities appropriate level that will equip students after successful completion of the course are described

Refer to Appendix A

• Description of the Level of Learning Outcomes for each course according to the Qualifications Framework of the European Higher Education Area

• Indicators Descriptors Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B.

• Summary writing Guide of Learning Outcomes

The aim of the course is to teach and consolidate principles of inorganic chemistry through appropriate laboratory exercises and to train students in synthesis and characterization techniques of inorganic compounds

• After successful completion of the course students should be able to:

1. To recognize the contribution of inorganic chemistry to the development of chemistry and other related branches of science.

2. To be able to synthesize COMPLEXES compounds using appropriate synthetic methods.

3. Be able to isolate complexes compounds in pure form using appropriate purification methods.

4. To know some characteristic properties (geometry, mode of integration, etc.) of various metal ions.

4. Understand geometric isomerism (eg cis, trans) in inclusion compounds.

5. To know principles (stability of oxidation states, kinetics, etc.) regarding the chemistry of inclusion of transition metals and elements of main group groups, etc.6. To recognize the different ways of incorporating substitutes (monodental, chelating, bridging, etc.).

7. Interpret infrared and visible-UV spectroscopic data of inorganic compounds and be led to conclusions about the way of inclusion of substituents, geometry, isomerism, symmetry, crystal field crossing energy, etc.

9. To be able to estimate and evaluate biological biochemical mechanical catalytic properties of compounds and their technological importance.

Knowledge

Knowledge and understanding of basic concepts, principles and theories related to the synthesis and physicochemical characterization of coordination compounds.

Skills

Skills in the synthesis and purification of coordination compounds, use of spectrometers and the magnetic balance, interpreting IR and visible-ultraviolet spectroscopic data, processing magnetic susceptibility data at room temperature. Complex problem solving skills through careful analysis of the data provided.
Capacities	
Ability to apply the knowledge provided	in troubleshooting (theoretical and synthetic)
relating to Inorganic Chemistry.	
Ability to prepare coordination compou	nds in pure form.
Ability to use spectrometers and magne	tic balance.
Ability to interpret spectroscopic data.	
Ability not only to work independently	but also to interact with other students on
the course topics.	
General Skills	
Taking into account the general compet	ences to be acquired by the graduate (as
listed in the DS and listed below) what /	which of these skills the course is aimed ?
Search, analysis and synthesis of data	Design and project management
and information, the use and the	Respect for diversity and multiculturalism
necessary technologies	Respect for the natural environment
Adapting to new situations	Demonstrate social, professional and moral
Decision making	responsibility and sensitivity to gender
Autonomous work	issues
Teamwork	Criticism and self-criticism
Working in an international	Promotion of free, creative and inductive
environment	thinking
Work in a multidisciplinary	
environment	Other
Generate new research ideas	

The general skills that should be acquired by the student and in which the course aims are:

Search, analysis and synthesis of data and information and making decisions. Turning theory into practice.

Promotion of free, creative and inductive thinking.

Independent and teamwork.

Acquisition of the appropriate theoretical and practical knowledge base to enable the further training both in theory (in more specific subjects of Inorganic Chemistry) and in laboratory.

(3) COURSE SYLLABUS

Instructor Professor M Louloudi (2X5 hours) (1) Synthesis of hybrid materials, through surface chemical modification, with antioxidant properties & their characterization.
Instructor Professor A. Garoufis (2X5 hours) (2) Synthesis of polynuclear compounds of the elements of the platinum group. Study of their interactions with oligonucleotides using multinuclear and multidimensional NMR.
Instructor Professor G Malandrinos (2X5 hours) (3) Synthesis and characterization of luminescent transition metal complexes
Teacher Professor E Manos (2x5 hours) (1) -Solvothermal synthesis of microporous metal organic materials-study of ion sorption properties
Instructor Professor A Tsipis (2X5 hours) (2) Study of the compounds of ammonia with trimetallic complexes.
Instructor Professor I. Plakatouras (2X5 hours) (3) - Synthesis, and characterization of inclusion polymers - Properties of reversible moisture binding.
Teaching Professor S. Hadjikakou (2x5 hours) (4) · Small bioactive molecules containing main group elements Synthesis and

characterization

LECTURE DELIVERY METHOD	Face to Face	
Face to Face, distance learning		
κ.λπ.		
USE OF INFORMATION AND	Electronic communication	n with students.
COMMUNICATION	Post-exercise additional r	notes etc. on the
TECHNOLOGIES	websites of teachers	
Using ICT in Teaching ,		
Laboratory Training and in		
Communication with the		
students		
ORGANIZING THE TEACHING		
Describe in detail the methods	ACTIVITY	SEMESTER WORK
of teaching.		LOAD
Lectures, Seminars, Laboratory	Lectures	20
Exercise, Field Exercise, Study	Laboratory practice	200
and literature analysis, Tutorial,	Tutorial	45
Practice (Placement), Clinical	Writing work	20
Practice, Art Workshop,	Individual study and	15
Interactive teaching, Study	preparation	
Visits, Study (project), Writing		
job / work, Artistic creation etc.		
Enter the hours of study for		
each student learning activity	TOTAL	300
and hours of Non-guided study		

in accordance with the	(25 hours of work load
principles of ECTS	per credit)
STUDENT EVALUATION	
Description of the evaluation process Assessment Language, Methods of assessment Formative or Concluding, Test Multiple Choice, Questions Short Answer, Development Questions Essays, Problem Solving, Written Work, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Clinical Examination Patient Artistic Interpretation Other / other Indicate clearly defined evaluation criteria and whether and which are accessible to students.	The students are graded based on their assignments in the context of the laboratory exercises, oral and / or a short written examination during the laboratory course and through written examinations at the end of the semester. Their assignments include the development of basic theory-purpose of the exercises, the experimental procedure and analysis-interpretation of results. The final exam include: Short Answer Questions, crisis, development, and problem solving All these criteria are explained to students at the start of the course.

(5) SUGGESTED LITERATURE

-SUGGESTED LITERATURE :

EYDOXOS

Experimental Method in Inorganic Chemsitry Book's code: 77121307 Edition: 1η /2018 Συγγραφείς: JOHN TANAKA, STEVEN L. SUIB ΣΩΤΗΡΗΣ ΧΑΤΖΗΚΑΚΟΥ, ΝΙΚΟΛΑΟΣ ΧΑΤΖΗΛΙΑΔΗΣ, ΣΠΥΡΙΔΩΝ Π. ΠΕΡΛΕΠΕΣ ISBN: 9786185304744 Τύπος: Σύγγραμμα Διαθέτης (Εκδότης): UNIBOOKS IKE

OTHERS

1. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edition, Parts A and B", Willey-Interscience Pubs, 1997.

2. Butler, Harrod, «Inorganic Chemistry: Principles and Application», 1994

3. A.B.P. Lever, "Inorganic electronic spectroscopy (second edition), Elsevier, 1984

4. Zvi Szafran, Ronald M. Pike, Mono M. Singh, "Microscale Inorganic Chemistry", J. Wiley (1991).

5. http://orgchem.colorado.edu/hndbksupport/irtutor/tutorial.html

6.http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.h tm

7. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

8.<u>http://symmetry.otterbein.edu/tutorial/index.html</u>

9. http://chemistry.bd.psu.edu/jircitano/TSdiagram.pdf

-Related Scientific Journals: Inorganic Chemistry European Journal of Inorganic Chemistry Journal of Chemical education Polyhedron Inorganic Synthesis

(1) GENERAL

SCHOOL	Natural Sci	iences			
ACADEMIC UNIT	Departmei	nt of Chemisti	ry		
LEVEL OF STUDIES	Postgradua	ate			
COURSE CODE	I-II-IIF01		SEMESTER	3rc	d
COURSE TITLE	LABORAT	ORY RESEARC	СН		
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepa	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	Ĵ	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours of	and the tota	l credits			
			6		6
Add rows if necessary. The orga	nisation of t	eaching	6		12
and the teaching methods used	are describe	ed in detail			
at (d).					1.11
COURSE TYPE	Specialized	background,	specializatio	on, s	SKIIIS
general background,	developme	ent			
special background,					
specialisea general					
	No				
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	No				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

This course enables students to

i)	Apply the basic principles o	f chemical instrumentation and instrumental
	techniques of chemical anal	ysis
ii)	Use the principles of applie	d chemistry and apply, modify and optimize
	experimental procedures, o	design of new experimental procedures and
	validate their effectiveness	
iii)	Apply data processing u	methods and techniques and advanced
,	computational calculations	nethous and teeninques and davanced
Knowle	dge	
i)	Knowledge and understandi	ng of specialized and advanced principles and
,	theories related to chemistr	v and chemical analysis
::)	Knowledge of advanced date	a processing methods
,		
III)	Knowledge of quality contro	and validation of chemical procedures
iv)	Search of international litera	ature
Skille		
3KIIIS ;}	Extract information from lite	prature and put them into practice
1) ::)		
II) 	Selections of the most appro	opriate experimental procedures
iii)	Interaction with other pos	stgraduate students and more experienced
	researchers	
iv)	Team work	
v)	Working in an international	/ multi-national environment
_		
Genera		
laking i	into consideration the general co	ompetences that the degree-holder must
ucquire the follo	(as these appear in the Diploma	a Supplement and appear below), at which of
	Swing does the course dim?	
Search j	for, analysis and synthesis of	Project planning and management
data an	d information, with the use of	Respect for difference and multiculturalism
the nec	essary technology	Respect for the natural environment
Adaptin 	ig to new situations	Showing social, professional and ethical
Decisioi	n-making	responsibility and sensitivity to gender
VVORKING Taanaa	g independently	ISSUES Criticians and colf criticians
Team w	Ork	Criticism and self-criticism
vvorking	g in an international mont	thinking
Workin		Uninking
environ	a in an infordicciplipary	
Product	g in an interdisciplinary ment	Others
rouuci	g in an interdisciplinary ment tion of new research ideas	Others
Search	g in an interdisciplinary ment tion of new research ideas analysis and synthesis of data a	Others nd information, by using the proper
Search, technol	g in an interdisciplinary ment tion of new research ideas analysis and synthesis of data a ogies.	Others nd information, by using the proper
Search, technol Working	g in an interdisciplinary ment tion of new research ideas analysis and synthesis of data a ogies. g independently	Others nd information, by using the proper
Search, technol Working Team w	g in an interdisciplinary ment tion of new research ideas analysis and synthesis of data a ogies. g independently york	<i>Others</i> nd information, by using the proper

Promoting free, creative and inductive thinking

Understanding chemical science, synthesis and characterization of new compounds and materials and demonstrate a coherent understanding of these practises

(3) SYLLABUS

The content of the course is depends on the research field and the specific task assigned to each student by his/her supervisor.

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.
COMMUNICATIONS	Communication via email	
TECHNOLOGY	Laboratory education	
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	15
teaching are described in detail.	Lab practice	240
Lectures, seminars, laboratory	Assignment writing	10
practice, fieldwork, study and	Study and analysis of	35
analysis of bibliography,	bibliography	
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
	Course total	300
The student's study hours for		
each learning activity are given		
directed study according to the		
airected study according to the		
Evaluation		
procedure	Writton oxamination in G	rook with multiplo
procedure	choice questionnaires and	d short-answer
Language of evaluation	questions	
methods of evaluation	Assay writing / project ev	aluation
summative or conclusive		
multiple choice questionnaires		
short-answer questions, open-		
ended questions, problem		
solving, written work.		
essay/report, oral examination.		
public presentation, laboratory		
work, clinical examination of		

patient, other	art	interpretation,
Specifical criteria d	ly-defi are giv	ned evaluation ven, and if and
where th students.	ney ar	e accessible to

(5) ATTACHED BIBLIOGRAPHY

SUGGESTED BIBLIOGRAPHY: : Multiple sources depending on the field of research

(1) GENERAL

SCHOOL	Natural Sci	iences			
ACADEMIC UNIT	Departme	nt of Chemist	ry		
LEVEL OF STUDIES	Postgradua	ate			
COURSE CODE	1-11 -		SEMESTER	3	
	ΙΙΙΓΟ2				
COURSE TITLE	MASTER 1	THESIS			
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for sepai	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	Ĵ	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours o	and the tota	l credits			
			9		18
Add rows if necessary. The orga	nisation of t	eaching	9		18
and the teaching methods used	are describe	ed in detail			
at (d).					
COURSE TYPE	Specialized	d background,	specializatio	on, s	skills
general background,	developme	ent			
special background,					
specialised general					
knowledge, skills development					
PREREQUISITE COURSES:	No				
	Crock				
	Greek				
	Voc				
	185				
	No				
COURSE WEDSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

This course enables students to

- iv) Apply the basic principles of chemical instrumentation and instrumental techniques of chemical analysis
- v) Use the principles of applied chemistry and apply, modify and optimize experimental procedures, design of new experimental procedures and validate their effectiveness
- vi) Apply data processing methods and techniques and advanced computational calculations

Knowledge

- v) Knowledge and understanding of specialized and advanced principles and theories related to chemistry and chemical analysis
- vi) Knowledge of advanced data processing methods
- vii) Knowledge of quality control and validation of chemical procedures
- viii) Search of international literature

Skills

- vi) Extract information from literature and put them into practice
- vii) Selections of the most appropriate experimental procedures
- viii) Interaction with other postgraduate students and more experienced researchers
- ix) Team work
- x) Working in an international / multi-national environment

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	
Search, analysis and synthesis of data ar	nd information, by using the proper

technologies.

Working independently

Team work

Promoting free, creative and inductive thinking

Understanding chemical science, synthesis and characterization of new compounds and materials and demonstrate a coherent understanding of these practises

(3) SYLLABUS

The content of the course is depends on the research field and the specific task assigned to each student by his/her supervisor.

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.
COMMUNICATIONS	Communication via email	
TECHNOLOGY	Laboratory education	
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	20
teaching are described in detail.	Lab Practice	100
Lectures, seminars, laboratory	Master thesis writing	40
practice, fieldwork, study and	Study, preparation	290
analysis of bibliography,		
tutorials, placements, clinical		
practice, art workshop,		
interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.	Course total	450
The student's study hours for		
each learning activity are given		
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation		
procedure	Evaluation is made on the	basis of the following
	criteria:	
Language of evaluation,	a) Understanding of	theoretical background
methods of evaluation,	b) experimental perf	ormance
summative or conclusive,	c) Quality of experim	ental results
multiple choice questionnaires,		
short-answer questions, open-		
ended questions, problem		
solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		

patient, other	art	interpretation,
Specifical criteria d	ly-defi are giv	ned evaluation ven, and if and
where th students.	ney ar	e accessible to

(5) ATTACHED BIBLIOGRAPHY

SUGGESTED BIBLIOGRAPHY: : Multiple sources depending on the field of research

(1) GENERAL

SCHOOL	Natural Sci	iences			
ACADEMIC UNIT	Department of Chemistry				
LEVEL OF STUDIES	Postgradua	ate			
COURSE CODE	I-II-III∆01		SEMESTER	4	
COURSE TITLE	WRITING	AND SUPPOR	T OF MASTE	RT	HESIS
INDEPENDENT TEACHI	NG ACTIVIT	IES			
if credits are awarded for separ	rate compor	nents of the	WEEKLY		
course, e.g. lectures, laborato	ry exercises,	etc. If the	TEACHING	G	CREDITS
credits are awarded for the wh	nole of the c	ourse, give	HOURS		
the weekly teaching hours c	and the tota	l credits			
			15		30
Add rows if necessary. The organ	nisation of t	eaching	15		30
and the teaching methods used	are describe	ed in detail			
at (a).	Caraciali				1.11
COURSE TYPE	Specialized	a background,	specializatio	on, s	SKIIIS
general background,	developme	ent			
special buckground,					
specialised general knowledge skills development					
	No				
TREREQUISITE COURSES.					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	No				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

This course enables students to

- vii) Apply the basic principles of chemical instrumentation and instrumental techniques of chemical analysis
- viii) Use the principles of applied chemistry and apply, modify and optimize experimental procedures, design of new experimental procedures and validate their effectiveness
- ix) Apply data processing methods and techniques and advanced computational calculations

Knowledge

- ix) Knowledge and understanding of specialized and advanced principles and theories related to chemistry and chemical analysis
- x) Knowledge of advanced data processing methods
- xi) Knowledge of quality control and validation of chemical procedures
- xii) Search of international literature

Skills

- xi) Extract information from literature and put them into practice
- xii) Selections of the most appropriate experimental procedures
- xiii) Interaction with other postgraduate students and more experienced researchers
- xiv) Team work
- xv) Working in an international / multi-national environment

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of	Project planning and management
data and information, with the use of	Respect for difference and multiculturalism
the necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender
Working independently	issues
Team work	Criticism and self-criticism
Working in an international	Production of free, creative and inductive
environment	thinking
Working in an interdisciplinary	
environment	Others
Production of new research ideas	
Search, analysis and synthesis of data an	nd information, by using the proper

technologies.

Working independently

Team work

Promoting free, creative and inductive thinking

Understanding chemical science, synthesis and characterization of new compounds and materials and demonstrate a coherent understanding of these practises

(3) SYLLABUS

The content of the course is depends on the research field and the specific task assigned to each student by his/her supervisor.

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	Use of PowerPoint in lect	ures.
COMMUNICATIONS	Communication via email	
TECHNOLOGY	Laboratory education	
Use of ICT in teaching,		
laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	15
teaching are described in detail.	Lab research	260
Lectures, seminars, laboratory	Assignment writing	240
practice, fieldwork, study and	Preparation-of	60
analysis of bibliography,	presentation &	
tutorials, placements, clinical	Examination of the	
practice, art workshop,	master-thesis	
interactive teaching,	Study	175
educational visits, project, essay		
writing, artistic creativity, etc.		
The student's study hours for		
each learning activity are given	Course total	750
as well as the hours of non-		
directed study according to the		
principles of the ECTS		
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation	Fueluetien is mede huse th	
procedure	Evaluation is made by a tr	Tree member committee
Language of qualitation	which is assigned by the L	Department of Chemistry.
Language of evaluation,		
methods of evaluation,		
summative of conclusive,		
chart answer questionnulles,		
anded questions problem		
coluing written work		
solving, willen WORK,		
essuy/report, oral examination,		
work dinical examination of		
work, chinical examination of		

patient, other	art	interpretation,
Specifical criteria a	lly-defi are giv	ned evaluation ven, and if and
students.	iey ui	e accessible to

(5) ATTACHED BIBLIOGRAPHY

SUGGESTED BIBLIOGRAPHY: : Multiple sources depending on the field of research